Stefan Holst
4 years ago
2 changed files with 251 additions and 0 deletions
@ -0,0 +1,146 @@
@@ -0,0 +1,146 @@
|
||||
"""Data structures for 2-valued, 4-valued, and 8-valued logic computation. |
||||
|
||||
Integer constants: ZERO, ONE, UNASSIGNED, UNKNOWN, RISING, FALLING, PPULSE, NPULSE. |
||||
|
||||
* The bits in the constants have the following meaning: |
||||
|
||||
* bit 0: Final/settled binary value of a signal |
||||
* bit 1: Initial binary value of a signal |
||||
* bit 2: 1, if activity or transitions are present on a signal |
||||
|
||||
Special meaning is given to values where bits 0 and 1 differ, but activity is 0. |
||||
These values are interpreted as 'unknown' or 'unassigned' in 4-valued and 8-valued logic. |
||||
|
||||
* 4-valued logic: 2 bits for storage, the third bit is implicitly 0 |
||||
|
||||
* 0 (0b00) : '0', 0, False, logic-0 (kyupy.logic.ZERO) |
||||
* 1 (0b01) : '-', None, unassigned (kyupy.logic.UNASSIGNED) |
||||
* 2 (0b10) : 'X', unknown (kyupy.logic.UNKNOWN) |
||||
* 3 (0b11) : '1', 1, True, logic-1 (kyupy.logic.ONE) |
||||
|
||||
* 8-valued logic: 3 bits for storage, adds the following 4 interpretations |
||||
|
||||
* 4 (0b100) : 'P', positive pulse 0 -> 1 -> 0 (kyupy.logic.PPULSE) |
||||
* 5 (0b101) : 'R', rising transition (kyupy.logic.RISING) |
||||
* 6 (0b110) : 'F', falling transition (kyupy.logic.FALLING) |
||||
* 7 (0b111) : 'N', negative pulse 1 -> 0 -> 1 (kyupy.logic.NPULSE) |
||||
|
||||
""" |
||||
|
||||
import math |
||||
from collections.abc import Iterable |
||||
|
||||
import numpy as np |
||||
|
||||
ZERO = 0b000 |
||||
UNASSIGNED = 0b001 |
||||
UNKNOWN = 0b010 |
||||
ONE = 0b011 |
||||
PPULSE = 0b100 |
||||
RISING = 0b101 |
||||
FALLING = 0b110 |
||||
NPULSE = 0b111 |
||||
|
||||
|
||||
def interpret(value): |
||||
if isinstance(value, Iterable) and not (isinstance(value, str) and len(value) == 1): |
||||
return list(map(interpret, value)) |
||||
if value in [0, '0', False, 'L', 'l']: |
||||
return ZERO |
||||
if value in [1, '1', True, 'H', 'h']: |
||||
return ONE |
||||
if value in [None, '-', 'Z', 'z']: |
||||
return UNASSIGNED |
||||
if value in ['R', 'r', '/']: |
||||
return RISING |
||||
if value in ['F', 'f', '\\']: |
||||
return FALLING |
||||
if value in ['P', 'p', '^']: |
||||
return PPULSE |
||||
if value in ['N', 'n', 'v']: |
||||
return NPULSE |
||||
return UNKNOWN |
||||
|
||||
|
||||
class MVArray: |
||||
"""An n-dimensional array of m-valued logic values. |
||||
|
||||
This class wraps a numpy.ndarray of type uint8 and adds support for encoding and |
||||
interpreting 2-valued, 4-valued, and 8-valued logic values. |
||||
Each logic value is stored as an uint8, value manipulations are cheaper than in BPArray. |
||||
|
||||
Axis convention (1 axis, a single vector/pattern): |
||||
|
||||
* Axis is PI/PO/FF position, the length of this axis is called "width". |
||||
|
||||
Axis convention for 2 and more axes is consistent with BPArray: |
||||
|
||||
* Second-last axis is PI/PO/FF position, the length of this axis is called "width". |
||||
* Last axis is vector/pattern, the length of this axis is called "length". |
||||
|
||||
""" |
||||
|
||||
def __init__(self, a, m=None): |
||||
self.m = m or 4 |
||||
assert self.m in range(2, 256) |
||||
|
||||
# Try our best to interpret given a. |
||||
if isinstance(a, MVArray): |
||||
self.data = a.data.copy() |
||||
self.m = m or a.m |
||||
elif isinstance(a, int) or isinstance(a, tuple): |
||||
self.data = np.full(a, UNASSIGNED, dtype=np.uint8) |
||||
else: |
||||
self.data = np.asarray(interpret(a), dtype=np.uint8) |
||||
if self.data.ndim > 1: |
||||
self.data = np.moveaxis(self.data, -2, -1) |
||||
|
||||
# Cast data to m-valued logic. |
||||
if self.m == 2: |
||||
self.data[...] = ((self.data & 0b001) & ((self.data >> 1) & 0b001) | (self.data == RISING)) * ONE |
||||
elif self.m == 4: |
||||
self.data[...] = (self.data & 0b011) & ((self.data != FALLING) * ONE) | ((self.data == RISING) * ONE) |
||||
elif self.m == 8: |
||||
self.data[...] = self.data & 0b111 |
||||
|
||||
self.length = 1 if self.data.ndim == 1 else self.data.shape[-1] |
||||
self.width = len(self.data) if self.data.ndim == 1 else self.data.shape[-2] |
||||
|
||||
def __repr__(self): |
||||
return f'<MVArray length={self.length} width={self.width} m={self.m} bytes={self.data.nbytes}>' |
||||
|
||||
|
||||
class BPArray: |
||||
"""An n-dimensional array of m-valued logic values that uses bit-parallel storage. |
||||
|
||||
The primary use of this format is in aiding efficient bit-parallel logic simulation. |
||||
The secondary benefit over MVArray is its memory efficiency. |
||||
Direct value manipulations are more expensive than with MVArray. |
||||
It is advised to first construct a MVArray, pack it into a BPArray for simulation and unpack the results |
||||
back into a MVArray for value access. |
||||
|
||||
The values along the last axis (vectors/patterns) are packed into uint8 words. |
||||
The second-last axis has length ceil(log2(m)) for storing all bits. |
||||
All other axes stay the same as in MVArray. |
||||
""" |
||||
|
||||
def __init__(self, a, m=None): |
||||
if not isinstance(a, MVArray) and not isinstance(a, BPArray): |
||||
a = MVArray(a, m) |
||||
if isinstance(a, MVArray): |
||||
if m is not None and m != a.m: |
||||
a = MVArray(a, m) # cast data |
||||
self.m = a.m |
||||
assert self.m in [2, 4, 8] |
||||
nwords = math.ceil(math.log2(self.m)) |
||||
nbytes = (a.data.shape[-1] - 1) // 8 + 1 |
||||
self.data = np.zeros(a.data.shape[:-1] + (nwords, nbytes), dtype=np.uint8) |
||||
for i in range(self.data.shape[-2]): |
||||
self.data[..., i, :] = np.packbits((a.data >> i) & 1, axis=-1) |
||||
else: # we have a BPArray |
||||
self.data = a.data.copy() # TODO: support conversion to different m |
||||
self.length = a.length |
||||
self.width = a.width |
||||
|
||||
def __repr__(self): |
||||
return f'<BPArray length={self.length} width={self.width} m={self.m} bytes={self.data.nbytes}>' |
@ -0,0 +1,105 @@
@@ -0,0 +1,105 @@
|
||||
import kyupy.logic as lg |
||||
|
||||
|
||||
def test_mvarray(): |
||||
|
||||
# instantiation with shape |
||||
|
||||
ary = lg.MVArray(4) |
||||
assert ary.length == 1 |
||||
assert ary.width == 4 |
||||
|
||||
ary = lg.MVArray((3, 2)) |
||||
assert ary.length == 2 |
||||
assert ary.width == 3 |
||||
|
||||
# instantiation with single vector |
||||
|
||||
ary = lg.MVArray([1, 0, 1]) |
||||
assert ary.length == 1 |
||||
assert ary.width == 3 |
||||
|
||||
ary = lg.MVArray("10X-") |
||||
assert ary.length == 1 |
||||
assert ary.width == 4 |
||||
|
||||
# instantiation with multiple vectors |
||||
|
||||
ary = lg.MVArray([[0, 0], [0, 1], [1, 0], [1, 1]]) |
||||
assert ary.length == 4 |
||||
assert ary.width == 2 |
||||
|
||||
ary = lg.MVArray(["000", "001", "110", "---"]) |
||||
assert ary.length == 4 |
||||
assert ary.width == 3 |
||||
|
||||
# casting to 2-valued logic |
||||
|
||||
ary = lg.MVArray([0, 1, 2, None], m=2) |
||||
assert ary.data[0] == lg.ZERO |
||||
assert ary.data[1] == lg.ONE |
||||
assert ary.data[2] == lg.ZERO |
||||
assert ary.data[3] == lg.ZERO |
||||
|
||||
ary = lg.MVArray("0-X1PRFN", m=2) |
||||
assert ary.data[0] == lg.ZERO |
||||
assert ary.data[1] == lg.ZERO |
||||
assert ary.data[2] == lg.ZERO |
||||
assert ary.data[3] == lg.ONE |
||||
assert ary.data[4] == lg.ZERO |
||||
assert ary.data[5] == lg.ONE |
||||
assert ary.data[6] == lg.ZERO |
||||
assert ary.data[7] == lg.ONE |
||||
|
||||
# casting to 4-valued logic |
||||
|
||||
ary = lg.MVArray([0, 1, 2, None, 'F']) |
||||
assert ary.data[0] == lg.ZERO |
||||
assert ary.data[1] == lg.ONE |
||||
assert ary.data[2] == lg.UNKNOWN |
||||
assert ary.data[3] == lg.UNASSIGNED |
||||
assert ary.data[4] == lg.ZERO |
||||
|
||||
ary = lg.MVArray("0-X1PRFN") |
||||
assert ary.data[0] == lg.ZERO |
||||
assert ary.data[1] == lg.UNASSIGNED |
||||
assert ary.data[2] == lg.UNKNOWN |
||||
assert ary.data[3] == lg.ONE |
||||
assert ary.data[4] == lg.ZERO |
||||
assert ary.data[5] == lg.ONE |
||||
assert ary.data[6] == lg.ZERO |
||||
assert ary.data[7] == lg.ONE |
||||
|
||||
# casting to 8-valued logic |
||||
|
||||
ary = lg.MVArray([0, 1, 2, None, 'F'], m=8) |
||||
assert ary.data[0] == lg.ZERO |
||||
assert ary.data[1] == lg.ONE |
||||
assert ary.data[2] == lg.UNKNOWN |
||||
assert ary.data[3] == lg.UNASSIGNED |
||||
assert ary.data[4] == lg.FALLING |
||||
|
||||
ary = lg.MVArray("0-X1PRFN", m=8) |
||||
assert ary.data[0] == lg.ZERO |
||||
assert ary.data[1] == lg.UNASSIGNED |
||||
assert ary.data[2] == lg.UNKNOWN |
||||
assert ary.data[3] == lg.ONE |
||||
assert ary.data[4] == lg.PPULSE |
||||
assert ary.data[5] == lg.RISING |
||||
assert ary.data[6] == lg.FALLING |
||||
assert ary.data[7] == lg.NPULSE |
||||
|
||||
# copy constructor and casting |
||||
|
||||
ary8 = lg.MVArray(ary, m=8) |
||||
assert ary8.length == 1 |
||||
assert ary8.width == 8 |
||||
assert ary8.data[7] == lg.NPULSE |
||||
|
||||
ary4 = lg.MVArray(ary, m=4) |
||||
assert ary4.data[1] == lg.UNASSIGNED |
||||
assert ary4.data[7] == lg.ONE |
||||
|
||||
ary2 = lg.MVArray(ary, m=2) |
||||
assert ary2.data[1] == lg.ZERO |
||||
assert ary2.data[7] == lg.ONE |
Loading…
Reference in new issue