Stefan Holst
2 years ago
7 changed files with 1535 additions and 1523 deletions
@ -1,509 +0,0 @@
@@ -1,509 +0,0 @@
|
||||
"""High-throughput combinational logic timing simulators. |
||||
|
||||
These simulators work similarly to :py:class:`~kyupy.logic_sim.LogicSim`. |
||||
They propagate values through the combinational circuit from (pseudo) primary inputs to (pseudo) primary outputs. |
||||
Instead of propagating logic values, these simulators propagate signal histories (waveforms). |
||||
They are designed to run many simulations in parallel and while their latencies are quite high, they can achieve |
||||
high throughput. |
||||
|
||||
The simulators are not event-based and are not capable of simulating sequential circuits directly. |
||||
""" |
||||
|
||||
import math |
||||
|
||||
import numpy as np |
||||
|
||||
from . import numba, cuda, hr_bytes |
||||
from .sim import SimOps |
||||
|
||||
|
||||
TMAX = np.float32(2 ** 127) |
||||
"""A large 32-bit floating point value used to mark the end of a waveform.""" |
||||
TMAX_OVL = np.float32(1.1 * 2 ** 127) |
||||
"""A large 32-bit floating point value used to mark the end of a waveform that |
||||
may be incomplete due to an overflow.""" |
||||
TMIN = np.float32(-2 ** 127) |
||||
"""A large negative 32-bit floating point value used at the beginning of waveforms that start with logic-1.""" |
||||
|
||||
|
||||
class WaveSim(SimOps): |
||||
"""A waveform-based combinational logic timing simulator running on CPU. |
||||
|
||||
:param circuit: The circuit to simulate. |
||||
:param timing: The timing annotation of the circuit (see :py:func:`kyupy.sdf.DelayFile.annotation` for details) |
||||
:param sims: The number of parallel simulations. |
||||
:param c_caps: The number of floats available in each waveform. Values must be positive and a multiple of 4. |
||||
Waveforms encode the signal switching history by storing transition times. |
||||
The waveform capacity roughly corresponds to the number of transitions |
||||
that can be stored. A capacity of ``n`` can store at least ``n-2`` transitions. If more transitions are |
||||
generated during simulation, the latest glitch is removed (freeing up two transition times) and an overflow |
||||
flag is set. If an integer is given, all waveforms are set to that same capacity. With an array of length |
||||
``len(circuit.lines)`` the capacity is set for each intermediate waveform individually. |
||||
:param strip_forks: If enabled, the simulator will not evaluate fork nodes explicitly. This saves simulation time |
||||
by reducing the number of nodes to simulate, but (interconnect) delay annotations of lines read by fork nodes |
||||
are ignored. |
||||
:param keep_waveforms: If disabled, memory of intermediate signal waveforms will be re-used. This greatly reduces |
||||
memory footprint, but intermediate signal waveforms become unaccessible after a propagation. |
||||
""" |
||||
def __init__(self, circuit, timing, sims=8, c_caps=16, c_reuse=False, strip_forks=False): |
||||
assert c_caps > 0 and c_caps % 4 == 0 |
||||
super().__init__(circuit, c_caps=c_caps//4, c_reuse=c_reuse, strip_forks=strip_forks) |
||||
self.sims = sims |
||||
|
||||
self.c_len *= 4 |
||||
self.vat[...,0:2] *= 4 |
||||
|
||||
self.timing = np.zeros((self.c_len, 2, 2)) |
||||
self.timing[:len(timing)] = timing |
||||
|
||||
self.c = np.zeros((self.c_len, sims), dtype=np.float32) + TMAX |
||||
self.s = np.zeros((len(self.s_nodes), sims, 11), dtype=np.float32) |
||||
"""Information about the logic values and transitions around the sequential elements (flip-flops) and ports. |
||||
|
||||
The first 3 values are read by ``s_to_c()``. |
||||
The remaining values are written by ``c_to_s()``. |
||||
|
||||
The elements are as follows: |
||||
* ``s[..., 0]`` (P)PI initial value |
||||
* ``s[..., 1]`` (P)PI transition time |
||||
* ``s[..., 2]`` (P)PI final value |
||||
* ``s[..., 3]`` (P)PO initial value |
||||
* ``s[..., 4]`` (P)PO earliest arrival time (EAT): The time at which the output transitioned from its initial value. |
||||
* ``s[..., 5]`` (P)PO latest stabilization time (LST): The time at which the output settled to its final value. |
||||
* ``s[..., 6]`` (P)PO final value |
||||
* ``s[..., 7]`` (P)PO capture value: probability of capturing a 1 at a given capture time |
||||
* ``s[..., 8]`` (P)PO sampled capture value: decided by random sampling according to a given seed. |
||||
* ``s[..., 9]`` (P)PO sampled capture slack: (capture time - LST) - decided by random sampling according to a given seed. |
||||
* ``s[..., 10]`` Overflow indicator: If non-zero, some signals in the input cone of this output had more |
||||
transitions than specified in ``c_caps``. Some transitions have been discarded, the |
||||
final values in the waveforms are still valid. |
||||
""" |
||||
|
||||
self.params = np.zeros((sims, 4), dtype=np.float32) |
||||
self.params[...,0] = 1.0 |
||||
|
||||
self.nbytes = sum([a.nbytes for a in (self.c, self.s, self.vat, self.ops, self.params)]) |
||||
|
||||
self.pi_s_locs = np.flatnonzero(self.vat[self.ppi_offset+np.arange(len(self.circuit.io_nodes)), 0] >= 0) |
||||
self.po_s_locs = np.flatnonzero(self.vat[self.ppo_offset+np.arange(len(self.circuit.io_nodes)), 0] >= 0) |
||||
self.ppio_s_locs = np.arange(len(self.circuit.io_nodes), len(self.s_nodes)) |
||||
|
||||
self.pippi_s_locs = np.concatenate([self.pi_s_locs, self.ppio_s_locs]) |
||||
self.poppo_s_locs = np.concatenate([self.po_s_locs, self.ppio_s_locs]) |
||||
|
||||
self.pi_c_locs = self.vat[self.ppi_offset+self.pi_s_locs, 0] |
||||
self.po_c_locs = self.vat[self.ppo_offset+self.po_s_locs, 0] |
||||
self.ppi_c_locs = self.vat[self.ppi_offset+self.ppio_s_locs, 0] |
||||
self.ppo_c_locs = self.vat[self.ppo_offset+self.ppio_s_locs, 0] |
||||
|
||||
self.pippi_c_locs = np.concatenate([self.pi_c_locs, self.ppi_c_locs]) |
||||
self.poppo_c_locs = np.concatenate([self.po_c_locs, self.ppo_c_locs]) |
||||
|
||||
def __repr__(self): |
||||
return f'<{type(self).__name__} {self.circuit.name} sims={self.sims} ops={len(self.ops)} ' + \ |
||||
f'levels={len(self.level_starts)} mem={hr_bytes(self.nbytes)}>' |
||||
|
||||
def s_to_c(self): |
||||
"""Transfers values of sequential elements and primary inputs to the combinational portion. |
||||
|
||||
Based on the data in ``self.s``, waveforms are generated on the input lines of the circuit. |
||||
It modifies ``self.c``. |
||||
""" |
||||
sins = np.moveaxis(self.s[self.pippi_s_locs], -1, 0) |
||||
cond = (sins[2] != 0) + 2*(sins[0] != 0) # choices order: 0 R F 1 |
||||
self.c[self.pippi_c_locs] = np.choose(cond, [TMAX, sins[1], TMIN, TMIN]) |
||||
self.c[self.pippi_c_locs+1] = np.choose(cond, [TMAX, TMAX, sins[1], TMAX]) |
||||
self.c[self.pippi_c_locs+2] = TMAX |
||||
|
||||
def c_prop(self, sims=None, sd=0.0, seed=1): |
||||
"""Propagates all waveforms from the (pseudo) primary inputs to the (pseudo) primary outputs. |
||||
|
||||
:param sims: Number of parallel simulations to execute. If None, all available simulations are performed. |
||||
:param sd: Standard deviation for injection of random delay variation. Active, if value is positive. |
||||
:param seed: Random seed for delay variations. |
||||
""" |
||||
sims = min(sims or self.sims, self.sims) |
||||
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
||||
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.vat, 0, sims, |
||||
self.timing, self.params, sd, seed) |
||||
|
||||
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
||||
"""Simulates a capture operation at all sequential elements and primary outputs. |
||||
|
||||
Propagated waveforms in ``self.c`` at and around the given capture time are analyzed and |
||||
the results are stored in ``self.s``. |
||||
|
||||
:param time: The desired capture time. By default, a capture of the settled value is performed. |
||||
:param sd: A standard deviation for uncertainty in the actual capture time. |
||||
:param seed: The random seed for a capture with uncertainty. |
||||
""" |
||||
for s_loc, (c_loc, c_len, _) in zip(self.poppo_s_locs, self.vat[self.ppo_offset+self.poppo_s_locs]): |
||||
for vector in range(self.sims): |
||||
self.s[s_loc, vector, 3:] = wave_capture_cpu(self.c, c_loc, c_len, vector, time=time, sd=sd, seed=seed) |
||||
|
||||
def s_ppo_to_ppi(self, time=0.0): |
||||
"""Re-assigns the last sampled capture to the appropriate pseudo-primary inputs (PPI). |
||||
Each PPI transition is constructed from its previous final value, the |
||||
given time, and the sampled captured value of its PPO. Reads and modifies ``self.s``. |
||||
|
||||
:param time: The transition time at the inputs (usually 0.0). |
||||
""" |
||||
self.s[self.ppio_s_locs, :, 0] = self.s[self.ppio_s_locs, :, 2] |
||||
self.s[self.ppio_s_locs, :, 1] = time |
||||
self.s[self.ppio_s_locs, :, 2] = self.s[self.ppio_s_locs, :, 8] |
||||
|
||||
|
||||
@numba.njit |
||||
def rand_gauss_cpu(seed, sd): |
||||
clamp = 0.5 |
||||
if sd <= 0.0: |
||||
return 1.0 |
||||
while True: |
||||
x = -6.0 |
||||
for _ in range(12): |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
x += float((seed >> 8) & 0xffffff) / float(1 << 24) |
||||
x *= sd |
||||
if abs(x) <= clamp: |
||||
break |
||||
return x + 1.0 |
||||
|
||||
|
||||
@numba.njit |
||||
def wave_eval_cpu(op, cbuf, vat, st_idx, line_times, param, sd=0.0, seed=0): |
||||
lut, z_idx, a_idx, b_idx, c_idx, d_idx = op |
||||
|
||||
# >>> same code as wave_eval_cpu (except rand_gauss_*pu()-call) >>> |
||||
overflows = int(0) |
||||
|
||||
_seed = (seed << 4) + (z_idx << 20) + (st_idx << 1) |
||||
|
||||
a_mem = vat[a_idx, 0] |
||||
b_mem = vat[b_idx, 0] |
||||
c_mem = vat[c_idx, 0] |
||||
d_mem = vat[d_idx, 0] |
||||
z_mem, z_cap, _ = vat[z_idx] |
||||
|
||||
a_cur = int(0) |
||||
b_cur = int(0) |
||||
c_cur = int(0) |
||||
d_cur = int(0) |
||||
z_cur = lut & 1 |
||||
if z_cur == 1: |
||||
cbuf[z_mem, st_idx] = TMIN |
||||
|
||||
a = cbuf[a_mem, st_idx] + line_times[a_idx, 0, z_cur] * rand_gauss_cpu(_seed ^ a_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == a_idx: a += param[2+z_cur] |
||||
b = cbuf[b_mem, st_idx] + line_times[b_idx, 0, z_cur] * rand_gauss_cpu(_seed ^ b_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == b_idx: b += param[2+z_cur] |
||||
c = cbuf[c_mem, st_idx] + line_times[c_idx, 0, z_cur] * rand_gauss_cpu(_seed ^ c_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == c_idx: c += param[2+z_cur] |
||||
d = cbuf[d_mem, st_idx] + line_times[d_idx, 0, z_cur] * rand_gauss_cpu(_seed ^ d_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == d_idx: d += param[2+z_cur] |
||||
|
||||
previous_t = TMIN |
||||
|
||||
current_t = min(a, b, c, d) |
||||
inputs = int(0) |
||||
|
||||
while current_t < TMAX: |
||||
z_val = z_cur & 1 |
||||
if a == current_t: |
||||
a_cur += 1 |
||||
a = cbuf[a_mem + a_cur, st_idx] |
||||
a += line_times[a_idx, 0, z_val ^ 1] * rand_gauss_cpu(_seed ^ a_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[a_idx, 1, z_val] * rand_gauss_cpu(_seed ^ a_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == a_idx: |
||||
a += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 1 |
||||
next_t = a |
||||
|
||||
elif b == current_t: |
||||
b_cur += 1 |
||||
b = cbuf[b_mem + b_cur, st_idx] |
||||
b += line_times[b_idx, 0, z_val ^ 1] * rand_gauss_cpu(_seed ^ b_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[b_idx, 1, z_val] * rand_gauss_cpu(_seed ^ b_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == b_idx: |
||||
b += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 2 |
||||
next_t = b |
||||
|
||||
elif c == current_t: |
||||
c_cur += 1 |
||||
c = cbuf[c_mem + c_cur, st_idx] |
||||
c += line_times[c_idx, 0, z_val ^ 1] * rand_gauss_cpu(_seed ^ c_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[c_idx, 1, z_val] * rand_gauss_cpu(_seed ^ c_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == c_idx: |
||||
c += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 4 |
||||
next_t = c |
||||
|
||||
else: |
||||
d_cur += 1 |
||||
d = cbuf[d_mem + d_cur, st_idx] |
||||
d += line_times[d_idx, 0, z_val ^ 1] * rand_gauss_cpu(_seed ^ d_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[d_idx, 1, z_val] * rand_gauss_cpu(_seed ^ d_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == d_idx: |
||||
d += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 8 |
||||
next_t = d |
||||
|
||||
if (z_cur & 1) != ((lut >> inputs) & 1): |
||||
# we generate a toggle in z_mem, if: |
||||
# ( it is the first toggle in z_mem OR |
||||
# following toggle is earlier OR |
||||
# pulse is wide enough ) AND enough space in z_mem. |
||||
if z_cur == 0 or next_t < current_t or (current_t - previous_t) > thresh: |
||||
if z_cur < (z_cap - 1): |
||||
cbuf[z_mem + z_cur, st_idx] = current_t |
||||
previous_t = current_t |
||||
z_cur += 1 |
||||
else: |
||||
overflows += 1 |
||||
previous_t = cbuf[z_mem + z_cur - 1, st_idx] |
||||
z_cur -= 1 |
||||
else: |
||||
z_cur -= 1 |
||||
previous_t = cbuf[z_mem + z_cur - 1, st_idx] if z_cur > 0 else TMIN |
||||
|
||||
current_t = min(a, b, c, d) |
||||
|
||||
# generate overflow flag or propagate from input |
||||
cbuf[z_mem + z_cur, st_idx] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
||||
|
||||
|
||||
@numba.njit |
||||
def level_eval_cpu(ops, op_start, op_stop, c, vat, st_start, st_stop, line_times, params, sd, seed): |
||||
overflows = 0 |
||||
for op_idx in range(op_start, op_stop): |
||||
op = ops[op_idx] |
||||
for st_idx in range(st_start, st_stop): |
||||
wave_eval_cpu(op, c, vat, st_idx, line_times, params[st_idx], sd, seed) |
||||
|
||||
|
||||
@numba.njit |
||||
def wave_capture_cpu(c, c_loc, c_len, vector, time=TMAX, sd=0.0, seed=1): |
||||
s_sqrt2 = sd * math.sqrt(2) |
||||
m = 0.5 |
||||
acc = 0.0 |
||||
eat = TMAX |
||||
lst = TMIN |
||||
tog = 0 |
||||
ovl = 0 |
||||
val = int(0) |
||||
final = int(0) |
||||
w = c[c_loc:c_loc+c_len, vector] |
||||
for t in w: |
||||
if t >= TMAX: |
||||
if t == TMAX_OVL: |
||||
ovl = 1 |
||||
break |
||||
m = -m |
||||
final ^= 1 |
||||
if t < time: |
||||
val ^= 1 |
||||
if t <= TMIN: continue |
||||
if s_sqrt2 > 0: |
||||
acc += m * (1 + math.erf((t - time) / s_sqrt2)) |
||||
eat = min(eat, t) |
||||
lst = max(lst, t) |
||||
tog += 1 |
||||
if s_sqrt2 > 0: |
||||
if m < 0: |
||||
acc += 1 |
||||
if acc >= 0.99: |
||||
val = 1 |
||||
elif acc > 0.01: |
||||
seed = (seed << 4) + (vector << 20) + c_loc |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
rnd = float((seed >> 8) & 0xffffff) / float(1 << 24) |
||||
val = rnd < acc |
||||
else: |
||||
val = 0 |
||||
else: |
||||
acc = val |
||||
|
||||
return (w[0] <= TMIN), eat, lst, final, acc, val, 0, ovl |
||||
|
||||
|
||||
class WaveSimCuda(WaveSim): |
||||
"""A GPU-accelerated waveform-based combinational logic timing simulator. |
||||
|
||||
The API is the same as for :py:class:`WaveSim`. |
||||
All internal memories are mirrored into GPU memory upon construction. |
||||
Some operations like access to single waveforms can involve large communication overheads. |
||||
""" |
||||
def __init__(self, circuit, timing, sims=8, c_caps=16, c_reuse=False, strip_forks=False): |
||||
super().__init__(circuit, timing, sims, c_caps, c_reuse, strip_forks) |
||||
|
||||
self.c = cuda.to_device(self.c) |
||||
self.s = cuda.to_device(self.s) |
||||
self.ops = cuda.to_device(self.ops) |
||||
self.vat = cuda.to_device(self.vat) |
||||
self.timing = cuda.to_device(self.timing) |
||||
self.params = cuda.to_device(self.params) |
||||
|
||||
self._block_dim = (32, 16) |
||||
|
||||
# TODO implement on GPU |
||||
#def s_to_c(self): |
||||
|
||||
def _grid_dim(self, x, y): |
||||
gx = math.ceil(x / self._block_dim[0]) |
||||
gy = math.ceil(y / self._block_dim[1]) |
||||
return gx, gy |
||||
|
||||
def c_prop(self, sims=None, sd=0.0, seed=1): |
||||
sims = min(sims or self.sims, self.sims) |
||||
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
||||
grid_dim = self._grid_dim(sims, op_stop - op_start) |
||||
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.vat, int(0), |
||||
sims, self.timing, self.params, sd, seed) |
||||
cuda.synchronize() |
||||
|
||||
# TODO implement on GPU |
||||
#def c_to_s(self): |
||||
|
||||
# TODO implement on GPU |
||||
#def s_ppo_to_ppi(self, time=0.0): |
||||
|
||||
|
||||
@cuda.jit(device=True) |
||||
def rand_gauss_gpu(seed, sd): |
||||
clamp = 0.5 |
||||
if sd <= 0.0: |
||||
return 1.0 |
||||
while True: |
||||
x = -6.0 |
||||
for _ in range(12): |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
x += float((seed >> 8) & 0xffffff) / float(1 << 24) |
||||
x *= sd |
||||
if abs(x) <= clamp: |
||||
break |
||||
return x + 1.0 |
||||
|
||||
|
||||
@cuda.jit() |
||||
def wave_eval_gpu(ops, op_start, op_stop, cbuf, vat, st_start, st_stop, line_times, param, sd, seed): |
||||
x, y = cuda.grid(2) |
||||
st_idx = st_start + x |
||||
op_idx = op_start + y |
||||
if st_idx >= st_stop: return |
||||
if op_idx >= op_stop: return |
||||
|
||||
lut = ops[op_idx, 0] |
||||
z_idx = ops[op_idx, 1] |
||||
a_idx = ops[op_idx, 2] |
||||
b_idx = ops[op_idx, 3] |
||||
c_idx = ops[op_idx, 4] |
||||
d_idx = ops[op_idx, 5] |
||||
|
||||
param = param[st_idx] |
||||
|
||||
# >>> same code as wave_eval_cpu (except rand_gauss_*pu()-call) >>> |
||||
overflows = int(0) |
||||
|
||||
_seed = (seed << 4) + (z_idx << 20) + (st_idx << 1) |
||||
|
||||
a_mem = vat[a_idx, 0] |
||||
b_mem = vat[b_idx, 0] |
||||
c_mem = vat[c_idx, 0] |
||||
d_mem = vat[d_idx, 0] |
||||
z_mem, z_cap, _ = vat[z_idx] |
||||
|
||||
a_cur = int(0) |
||||
b_cur = int(0) |
||||
c_cur = int(0) |
||||
d_cur = int(0) |
||||
z_cur = lut & 1 |
||||
if z_cur == 1: |
||||
cbuf[z_mem, st_idx] = TMIN |
||||
|
||||
a = cbuf[a_mem, st_idx] + line_times[a_idx, 0, z_cur] * rand_gauss_gpu(_seed ^ a_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == a_idx: a += param[2+z_cur] |
||||
b = cbuf[b_mem, st_idx] + line_times[b_idx, 0, z_cur] * rand_gauss_gpu(_seed ^ b_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == b_idx: b += param[2+z_cur] |
||||
c = cbuf[c_mem, st_idx] + line_times[c_idx, 0, z_cur] * rand_gauss_gpu(_seed ^ c_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == c_idx: c += param[2+z_cur] |
||||
d = cbuf[d_mem, st_idx] + line_times[d_idx, 0, z_cur] * rand_gauss_gpu(_seed ^ d_mem ^ z_cur, sd) * param[0] |
||||
if int(param[1]) == d_idx: d += param[2+z_cur] |
||||
|
||||
previous_t = TMIN |
||||
|
||||
current_t = min(a, b, c, d) |
||||
inputs = int(0) |
||||
|
||||
while current_t < TMAX: |
||||
z_val = z_cur & 1 |
||||
if a == current_t: |
||||
a_cur += 1 |
||||
a = cbuf[a_mem + a_cur, st_idx] |
||||
a += line_times[a_idx, 0, z_val ^ 1] * rand_gauss_gpu(_seed ^ a_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[a_idx, 1, z_val] * rand_gauss_gpu(_seed ^ a_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == a_idx: |
||||
a += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 1 |
||||
next_t = a |
||||
|
||||
elif b == current_t: |
||||
b_cur += 1 |
||||
b = cbuf[b_mem + b_cur, st_idx] |
||||
b += line_times[b_idx, 0, z_val ^ 1] * rand_gauss_gpu(_seed ^ b_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[b_idx, 1, z_val] * rand_gauss_gpu(_seed ^ b_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == b_idx: |
||||
b += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 2 |
||||
next_t = b |
||||
|
||||
elif c == current_t: |
||||
c_cur += 1 |
||||
c = cbuf[c_mem + c_cur, st_idx] |
||||
c += line_times[c_idx, 0, z_val ^ 1] * rand_gauss_gpu(_seed ^ c_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[c_idx, 1, z_val] * rand_gauss_gpu(_seed ^ c_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == c_idx: |
||||
c += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 4 |
||||
next_t = c |
||||
|
||||
else: |
||||
d_cur += 1 |
||||
d = cbuf[d_mem + d_cur, st_idx] |
||||
d += line_times[d_idx, 0, z_val ^ 1] * rand_gauss_gpu(_seed ^ d_mem ^ z_val ^ 1, sd) * param[0] |
||||
thresh = line_times[d_idx, 1, z_val] * rand_gauss_gpu(_seed ^ d_mem ^ z_val, sd) * param[0] |
||||
if int(param[1]) == d_idx: |
||||
d += param[2+(z_val^1)] |
||||
thresh += param[2+z_val] |
||||
inputs ^= 8 |
||||
next_t = d |
||||
|
||||
if (z_cur & 1) != ((lut >> inputs) & 1): |
||||
# we generate a toggle in z_mem, if: |
||||
# ( it is the first toggle in z_mem OR |
||||
# following toggle is earlier OR |
||||
# pulse is wide enough ) AND enough space in z_mem. |
||||
if z_cur == 0 or next_t < current_t or (current_t - previous_t) > thresh: |
||||
if z_cur < (z_cap - 1): |
||||
cbuf[z_mem + z_cur, st_idx] = current_t |
||||
previous_t = current_t |
||||
z_cur += 1 |
||||
else: |
||||
overflows += 1 |
||||
previous_t = cbuf[z_mem + z_cur - 1, st_idx] |
||||
z_cur -= 1 |
||||
else: |
||||
z_cur -= 1 |
||||
previous_t = cbuf[z_mem + z_cur - 1, st_idx] if z_cur > 0 else TMIN |
||||
|
||||
current_t = min(a, b, c, d) |
||||
|
||||
# generate overflow flag or propagate from input |
||||
cbuf[z_mem + z_cur, st_idx] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
@ -0,0 +1,961 @@
@@ -0,0 +1,961 @@
|
||||
"""High-throughput combinational logic timing simulators. |
||||
|
||||
These simulators work similarly to :py:class:`~kyupy.logic_sim.LogicSim`. |
||||
They propagate values through the combinational circuit from (pseudo) primary inputs to (pseudo) primary outputs. |
||||
Instead of propagating logic values, these simulators propagate signal histories (waveforms). |
||||
They are designed to run many simulations in parallel and while their latencies are quite high, they can achieve |
||||
high throughput. |
||||
|
||||
The simulators are not event-based and are not capable of simulating sequential circuits directly. |
||||
|
||||
Two simulators are available: :py:class:`WaveSim` runs on the CPU, and the derived class |
||||
:py:class:`WaveSimCuda` runs on the GPU. |
||||
""" |
||||
|
||||
import math |
||||
from bisect import bisect, insort_left |
||||
|
||||
import numpy as np |
||||
|
||||
from . import numba, cuda, hr_bytes |
||||
|
||||
|
||||
TMAX = np.float32(2 ** 127) |
||||
"""A large 32-bit floating point value used to mark the end of a waveform.""" |
||||
TMAX_OVL = np.float32(1.1 * 2 ** 127) |
||||
"""A large 32-bit floating point value used to mark the end of a waveform that |
||||
may be incomplete due to an overflow.""" |
||||
TMIN = np.float32(-2 ** 127) |
||||
"""A large negative 32-bit floating point value used at the beginning of waveforms that start with logic-1.""" |
||||
|
||||
|
||||
class Heap: |
||||
def __init__(self): |
||||
self.chunks = dict() # map start location to chunk size |
||||
self.released = list() # chunks that were released |
||||
self.current_size = 0 |
||||
self.max_size = 0 |
||||
|
||||
def alloc(self, size): |
||||
for idx, loc in enumerate(self.released): |
||||
if self.chunks[loc] == size: |
||||
del self.released[idx] |
||||
return loc |
||||
if self.chunks[loc] > size: # split chunk |
||||
chunksize = self.chunks[loc] |
||||
self.chunks[loc] = size |
||||
self.chunks[loc + size] = chunksize - size |
||||
self.released[idx] = loc + size # move released pointer: loc -> loc+size |
||||
return loc |
||||
# no previously released chunk; make new one |
||||
loc = self.current_size |
||||
self.chunks[loc] = size |
||||
self.current_size += size |
||||
self.max_size = max(self.max_size, self.current_size) |
||||
return loc |
||||
|
||||
def free(self, loc): |
||||
size = self.chunks[loc] |
||||
if loc + size == self.current_size: # end of managed area, remove chunk |
||||
del self.chunks[loc] |
||||
self.current_size -= size |
||||
# check and remove prev chunk if free |
||||
if len(self.released) > 0: |
||||
prev = self.released[-1] |
||||
if prev + self.chunks[prev] == self.current_size: |
||||
chunksize = self.chunks[prev] |
||||
del self.chunks[prev] |
||||
del self.released[-1] |
||||
self.current_size -= chunksize |
||||
return |
||||
released_idx = bisect(self.released, loc) |
||||
if released_idx < len(self.released) and loc + size == self.released[released_idx]: # next chunk is free, merge |
||||
chunksize = size + self.chunks[loc + size] |
||||
del self.chunks[loc + size] |
||||
self.chunks[loc] = chunksize |
||||
size = self.chunks[loc] |
||||
self.released[released_idx] = loc |
||||
else: |
||||
insort_left(self.released, loc) # put in a new release |
||||
if released_idx > 0: # check if previous chunk is free |
||||
prev = self.released[released_idx - 1] |
||||
if prev + self.chunks[prev] == loc: # previous chunk is adjacent to freed one, merge |
||||
chunksize = size + self.chunks[prev] |
||||
del self.chunks[loc] |
||||
self.chunks[prev] = chunksize |
||||
del self.released[released_idx] |
||||
|
||||
def __repr__(self): |
||||
r = [] |
||||
for loc in sorted(self.chunks.keys()): |
||||
size = self.chunks[loc] |
||||
released_idx = bisect(self.released, loc) |
||||
is_released = released_idx > 0 and len(self.released) > 0 and self.released[released_idx - 1] == loc |
||||
r.append(f'{loc:5d}: {"free" if is_released else "used"} {size}') |
||||
return "\n".join(r) |
||||
|
||||
|
||||
class WaveSim: |
||||
"""A waveform-based combinational logic timing simulator running on CPU. |
||||
|
||||
:param circuit: The circuit to simulate. |
||||
:param timing: The timing annotation of the circuit (see :py:func:`kyupy.sdf.DelayFile.annotation` for details) |
||||
:param sims: The number of parallel simulations. |
||||
:param wavecaps: The number of floats available in each waveform. Waveforms are encoding the signal switching |
||||
history by storing transition times. The waveform capacity roughly corresponds to the number of transitions |
||||
that can be stored. A capacity of ``n`` can store at least ``n-2`` transitions. If more transitions are |
||||
generated during simulation, the latest glitch is removed (freeing up two transition times) and an overflow |
||||
flag is set. If an integer is given, all waveforms are set to that same capacity. With an array of length |
||||
``len(circuit.lines)`` the capacity can be controlled for each intermediate waveform individually. |
||||
:param strip_forks: If enabled, the simulator will not evaluate fork nodes explicitly. This saves simulation time |
||||
by reducing the number of nodes to simulate, but (interconnect) delay annotations of lines read by fork nodes |
||||
are ignored. |
||||
:param keep_waveforms: If disabled, memory of intermediate signal waveforms will be re-used. This greatly reduces |
||||
memory footprint, but intermediate signal waveforms become unaccessible after a propagation. |
||||
""" |
||||
def __init__(self, circuit, timing, sims=8, wavecaps=16, strip_forks=False, keep_waveforms=True): |
||||
self.circuit = circuit |
||||
self.sims = sims |
||||
self.overflows = 0 |
||||
self.interface = list(circuit.io_nodes) + [n for n in circuit.nodes if 'dff' in n.kind.lower()] |
||||
|
||||
self.lst_eat_valid = False |
||||
|
||||
self.cdata = np.zeros((len(self.interface), sims, 7), dtype='float32') |
||||
|
||||
self.sdata = np.zeros((sims, 4), dtype='float32') |
||||
self.sdata[...,0] = 1.0 |
||||
|
||||
if isinstance(wavecaps, int): |
||||
wavecaps = [wavecaps] * len(circuit.lines) |
||||
|
||||
intf_wavecap = 4 # sufficient for storing only 1 transition. |
||||
|
||||
# indices for state allocation table (sat) |
||||
self.zero_idx = len(circuit.lines) |
||||
self.tmp_idx = self.zero_idx + 1 |
||||
self.ppi_offset = self.tmp_idx + 1 |
||||
self.ppo_offset = self.ppi_offset + len(self.interface) |
||||
self.sat_length = self.ppo_offset + len(self.interface) |
||||
|
||||
# translate circuit structure into self.ops |
||||
ops = [] |
||||
interface_dict = dict((n, i) for i, n in enumerate(self.interface)) |
||||
for n in circuit.topological_order(): |
||||
if n in interface_dict: |
||||
inp_idx = self.ppi_offset + interface_dict[n] |
||||
if len(n.outs) > 0 and n.outs[0] is not None: # first output of a PI/PPI |
||||
ops.append((0b1010, n.outs[0].index, inp_idx, self.zero_idx)) |
||||
if 'dff' in n.kind.lower(): # second output of DFF is inverted |
||||
if len(n.outs) > 1 and n.outs[1] is not None: |
||||
ops.append((0b0101, n.outs[1].index, inp_idx, self.zero_idx)) |
||||
else: # if not DFF, no output is inverted. |
||||
for o_line in n.outs[1:]: |
||||
if o_line is not None: |
||||
ops.append((0b1010, o_line.index, inp_idx, self.zero_idx)) |
||||
else: # regular node, not PI/PPI or PO/PPO |
||||
o0_idx = n.outs[0].index if len(n.outs) > 0 and n.outs[0] is not None else self.tmp_idx |
||||
i0_idx = n.ins[0].index if len(n.ins) > 0 and n.ins[0] is not None else self.zero_idx |
||||
i1_idx = n.ins[1].index if len(n.ins) > 1 and n.ins[1] is not None else self.zero_idx |
||||
kind = n.kind.lower() |
||||
if kind == '__fork__': |
||||
if not strip_forks: |
||||
for o_line in n.outs: |
||||
if o_line is not None: |
||||
ops.append((0b1010, o_line.index, i0_idx, i1_idx)) |
||||
elif kind.startswith('nand'): |
||||
ops.append((0b0111, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('nor'): |
||||
ops.append((0b0001, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('and'): |
||||
ops.append((0b1000, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('or'): |
||||
ops.append((0b1110, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('xor'): |
||||
ops.append((0b0110, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('xnor'): |
||||
ops.append((0b1001, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('not') or kind.startswith('inv') or kind.startswith('ibuf'): |
||||
ops.append((0b0101, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('buf') or kind.startswith('nbuf'): |
||||
ops.append((0b1010, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('__const1__') or kind.startswith('tieh'): |
||||
ops.append((0b0101, o0_idx, i0_idx, i1_idx)) |
||||
elif kind.startswith('__const0__') or kind.startswith('tiel'): |
||||
ops.append((0b1010, o0_idx, i0_idx, i1_idx)) |
||||
else: |
||||
print('unknown gate type', kind) |
||||
self.ops = np.asarray(ops, dtype='int32') |
||||
|
||||
# create a map from fanout lines to stem lines for fork stripping |
||||
stems = np.zeros(self.sat_length, dtype='int32') - 1 # default to -1: 'no fanout line' |
||||
if strip_forks: |
||||
for f in circuit.forks.values(): |
||||
prev_line = f.ins[0] |
||||
while prev_line.driver.kind == '__fork__': |
||||
prev_line = prev_line.driver.ins[0] |
||||
stem_idx = prev_line.index |
||||
for ol in f.outs: |
||||
stems[ol] = stem_idx |
||||
|
||||
# calculate level (distance from PI/PPI) and reference count for each line |
||||
levels = np.zeros(self.sat_length, dtype='int32') |
||||
ref_count = np.zeros(self.sat_length, dtype='int32') |
||||
level_starts = [0] |
||||
current_level = 1 |
||||
for i, op in enumerate(self.ops): |
||||
# if we fork-strip, always take the stems for determining fan-in level |
||||
i0_idx = stems[op[2]] if stems[op[2]] >= 0 else op[2] |
||||
i1_idx = stems[op[3]] if stems[op[3]] >= 0 else op[3] |
||||
if levels[i0_idx] >= current_level or levels[i1_idx] >= current_level: |
||||
current_level += 1 |
||||
level_starts.append(i) |
||||
levels[op[1]] = current_level # set level of the output line |
||||
ref_count[i0_idx] += 1 |
||||
ref_count[i1_idx] += 1 |
||||
self.level_starts = np.asarray(level_starts, dtype='int32') |
||||
self.level_stops = np.asarray(level_starts[1:] + [len(self.ops)], dtype='int32') |
||||
|
||||
# state allocation table. maps line and interface indices to self.state memory locations |
||||
self.sat = np.zeros((self.sat_length, 3), dtype='int') |
||||
self.sat[:, 0] = -1 |
||||
|
||||
h = Heap() |
||||
|
||||
# allocate and keep memory for special fields |
||||
self.sat[self.zero_idx] = h.alloc(intf_wavecap), intf_wavecap, 0 |
||||
self.sat[self.tmp_idx] = h.alloc(intf_wavecap), intf_wavecap, 0 |
||||
ref_count[self.zero_idx] += 1 |
||||
ref_count[self.tmp_idx] += 1 |
||||
|
||||
# allocate and keep memory for PI/PPI, keep memory for PO/PPO (allocated later) |
||||
for i, n in enumerate(self.interface): |
||||
if len(n.outs) > 0: |
||||
self.sat[self.ppi_offset + i] = h.alloc(intf_wavecap), intf_wavecap, 0 |
||||
ref_count[self.ppi_offset + i] += 1 |
||||
if len(n.ins) > 0: |
||||
i0_idx = stems[n.ins[0]] if stems[n.ins[0]] >= 0 else n.ins[0] |
||||
ref_count[i0_idx] += 1 |
||||
|
||||
# allocate memory for the rest of the circuit |
||||
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
||||
free_list = [] |
||||
for op in self.ops[op_start:op_stop]: |
||||
# if we fork-strip, always take the stems |
||||
i0_idx = stems[op[2]] if stems[op[2]] >= 0 else op[2] |
||||
i1_idx = stems[op[3]] if stems[op[3]] >= 0 else op[3] |
||||
ref_count[i0_idx] -= 1 |
||||
ref_count[i1_idx] -= 1 |
||||
if ref_count[i0_idx] <= 0: free_list.append(self.sat[i0_idx, 0]) |
||||
if ref_count[i1_idx] <= 0: free_list.append(self.sat[i1_idx, 0]) |
||||
o_idx = op[1] |
||||
cap = wavecaps[o_idx] |
||||
self.sat[o_idx] = h.alloc(cap), cap, 0 |
||||
if not keep_waveforms: |
||||
for loc in free_list: |
||||
h.free(loc) |
||||
|
||||
# copy memory location and capacity from stems to fanout lines |
||||
for lidx, stem in enumerate(stems): |
||||
if stem >= 0: # if at a fanout line |
||||
self.sat[lidx] = self.sat[stem] |
||||
|
||||
# copy memory location to PO/PPO area |
||||
for i, n in enumerate(self.interface): |
||||
if len(n.ins) > 0: |
||||
self.sat[self.ppo_offset + i] = self.sat[n.ins[0]] |
||||
|
||||
# pad timing |
||||
self.timing = np.zeros((self.sat_length, 2, 2)) |
||||
self.timing[:len(timing)] = timing |
||||
|
||||
# allocate self.state |
||||
self.state = np.zeros((h.max_size, sims), dtype='float32') + TMAX |
||||
|
||||
m1 = np.array([2 ** x for x in range(7, -1, -1)], dtype='uint8') |
||||
m0 = ~m1 |
||||
self.mask = np.rollaxis(np.vstack((m0, m1)), 1) |
||||
|
||||
def __repr__(self): |
||||
total_mem = self.state.nbytes + self.sat.nbytes + self.ops.nbytes + self.cdata.nbytes |
||||
return f'<WaveSim {self.circuit.name} sims={self.sims} ops={len(self.ops)} ' + \ |
||||
f'levels={len(self.level_starts)} mem={hr_bytes(total_mem)}>' |
||||
|
||||
def get_line_delay(self, line, polarity): |
||||
"""Returns the current delay of the given ``line`` and ``polarity`` in the simulation model.""" |
||||
return self.timing[line, 0, polarity] |
||||
|
||||
def set_line_delay(self, line, polarity, delay): |
||||
"""Sets a new ``delay`` for the given ``line`` and ``polarity`` in the simulation model.""" |
||||
self.timing[line, 0, polarity] = delay |
||||
|
||||
def assign(self, vectors, time=0.0, offset=0): |
||||
"""Assigns new values to the primary inputs and state-elements. |
||||
|
||||
:param vectors: The values to assign preferably in 8-valued logic. The values are converted to |
||||
appropriate waveforms with or one transition (``RISE``, ``FALL``) no transitions |
||||
(``ZERO``, ``ONE``, and others). |
||||
:type vectors: :py:class:`~kyupy.logic.BPArray` |
||||
:param time: The transition time of the generated waveforms. |
||||
:param offset: The offset into the vector set. The vector assigned to the first simulator is |
||||
``vectors[offset]``. |
||||
""" |
||||
nvectors = min(len(vectors) - offset, self.sims) |
||||
for i in range(len(self.interface)): |
||||
ppi_loc = self.sat[self.ppi_offset + i, 0] |
||||
if ppi_loc < 0: continue |
||||
for p in range(nvectors): |
||||
vector = p + offset |
||||
a = vectors.data[i, :, vector // 8] |
||||
m = self.mask[vector % 8] |
||||
toggle = 0 |
||||
if len(a) <= 2: |
||||
if a[0] & m[1]: |
||||
self.state[ppi_loc, p] = TMIN |
||||
toggle += 1 |
||||
else: |
||||
if a[1] & m[1]: |
||||
self.state[ppi_loc, p] = TMIN |
||||
toggle += 1 |
||||
if (a[2] & m[1]) and ((a[0] & m[1]) != (a[1] & m[1])): |
||||
self.state[ppi_loc + toggle, p] = time |
||||
toggle += 1 |
||||
self.state[ppi_loc + toggle, p] = TMAX |
||||
|
||||
def propagate(self, sims=None, sd=0.0, seed=1): |
||||
"""Propagates all waveforms from the (pseudo) primary inputs to the (pseudo) primary outputs. |
||||
|
||||
:param sims: Number of parallel simulations to execute. If None, all available simulations are performed. |
||||
:param sd: Standard deviation for injection of random delay variation. Active, if value is positive. |
||||
:param seed: Random seed for delay variations. |
||||
""" |
||||
sims = min(sims or self.sims, self.sims) |
||||
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
||||
self.overflows += level_eval(self.ops, op_start, op_stop, self.state, self.sat, 0, sims, |
||||
self.timing, self.sdata, sd, seed) |
||||
self.lst_eat_valid = False |
||||
|
||||
def wave(self, line, vector): |
||||
# """Returns the desired waveform from the simulation state. Only valid, if simulator was |
||||
# instantiated with ``keep_waveforms=True``.""" |
||||
if line < 0: |
||||
return [TMAX] |
||||
mem, wcap, _ = self.sat[line] |
||||
if mem < 0: |
||||
return [TMAX] |
||||
return self.state[mem:mem + wcap, vector] |
||||
|
||||
def wave_ppi(self, i, vector): |
||||
return self.wave(self.ppi_offset + i, vector) |
||||
|
||||
def wave_ppo(self, o, vector): |
||||
return self.wave(self.ppo_offset + o, vector) |
||||
|
||||
def capture(self, time=TMAX, sd=0.0, seed=1, cdata=None, offset=0): |
||||
"""Simulates a capture operation at all state-elements and primary outputs. |
||||
|
||||
The capture analyzes the propagated waveforms at and around the given capture time and returns |
||||
various results for each capture operation. |
||||
|
||||
:param time: The desired capture time. By default, a capture of the settled value is performed. |
||||
:param sd: A standard deviation for uncertainty in the actual capture time. |
||||
:param seed: The random seed for a capture with uncertainty. |
||||
:param cdata: An array to copy capture data into (optional). See the return value for details. |
||||
:param offset: An offset into the supplied capture data array. |
||||
:return: The capture data as numpy array. |
||||
|
||||
The 3-dimensional capture data array contains for each interface node (axis 0), |
||||
and each test (axis 1), seven values: |
||||
|
||||
0. Probability of capturing a 1 at the given capture time (same as next value, if no |
||||
standard deviation given). |
||||
1. A capture value decided by random sampling according to above probability and given seed. |
||||
2. The final value (assume a very late capture time). |
||||
3. True, if there was a premature capture (capture error), i.e. final value is different |
||||
from captured value. |
||||
4. Earliest arrival time. The time at which the output transitioned from its initial value. |
||||
5. Latest stabilization time. The time at which the output transitioned to its final value. |
||||
6. Overflow indicator. If non-zero, some signals in the input cone of this output had more |
||||
transitions than specified in ``wavecaps``. Some transitions have been discarded, the |
||||
final values in the waveforms are still valid. |
||||
""" |
||||
for i, node in enumerate(self.interface): |
||||
if len(node.ins) == 0: continue |
||||
for p in range(self.sims): |
||||
self.cdata[i, p] = self.capture_wave(self.ppo_offset + i, p, time, sd, seed) |
||||
if cdata is not None: |
||||
assert offset < cdata.shape[1] |
||||
cap_dim = min(cdata.shape[1] - offset, self.sims) |
||||
cdata[:, offset:cap_dim + offset] = self.cdata[:, 0:cap_dim] |
||||
self.lst_eat_valid = True |
||||
return self.cdata |
||||
|
||||
def reassign(self, time=0.0): |
||||
"""Re-assigns the last capture to the appropriate pseudo-primary inputs. Generates a new set of |
||||
waveforms at the PPIs that start with the previous final value of that PPI, and transitions at the |
||||
given time to the value captured in a previous simulation. :py:func:`~WaveSim.capture` must be called |
||||
prior to this function. The final value of each PPI is taken from the randomly sampled concrete logic |
||||
values in the capture data. |
||||
|
||||
:param time: The transition time at the inputs (usually 0.0). |
||||
""" |
||||
for i in range(len(self.interface)): |
||||
ppi_loc = self.sat[self.ppi_offset + i, 0] |
||||
ppo_loc = self.sat[self.ppo_offset + i, 0] |
||||
if ppi_loc < 0 or ppo_loc < 0: continue |
||||
for sidx in range(self.sims): |
||||
ival = self.val(self.ppi_offset + i, sidx, TMAX) > 0.5 |
||||
oval = self.cdata[i, sidx, 1] > 0.5 |
||||
toggle = 0 |
||||
if ival: |
||||
self.state[ppi_loc, sidx] = TMIN |
||||
toggle += 1 |
||||
if ival != oval: |
||||
self.state[ppi_loc + toggle, sidx] = time |
||||
toggle += 1 |
||||
self.state[ppi_loc + toggle, sidx] = TMAX |
||||
|
||||
def eat(self, line, vector): |
||||
eat = TMAX |
||||
for t in self.wave(line, vector): |
||||
if t >= TMAX: break |
||||
if t <= TMIN: continue |
||||
eat = min(eat, t) |
||||
return eat |
||||
|
||||
def lst(self, line, vector): |
||||
lst = TMIN |
||||
for t in self.wave(line, vector): |
||||
if t >= TMAX: break |
||||
if t <= TMIN: continue |
||||
lst = max(lst, t) |
||||
return lst |
||||
|
||||
def lst_ppo(self, o, vector): |
||||
if not self.lst_eat_valid: |
||||
self.capture() |
||||
return self.cdata[o, vector, 5] |
||||
|
||||
def toggles(self, line, vector): |
||||
tog = 0 |
||||
for t in self.wave(line, vector): |
||||
if t >= TMAX: break |
||||
if t <= TMIN: continue |
||||
tog += 1 |
||||
return tog |
||||
|
||||
def _vals(self, idx, vector, times, sd=0.0): |
||||
s_sqrt2 = sd * math.sqrt(2) |
||||
m = 0.5 |
||||
accs = [0.0] * len(times) |
||||
values = [0] * len(times) |
||||
for t in self.wave(idx, vector): |
||||
if t >= TMAX: break |
||||
for idx, time in enumerate(times): |
||||
if t < time: |
||||
values[idx] = values[idx] ^ 1 |
||||
m = -m |
||||
if t <= TMIN: continue |
||||
if s_sqrt2 > 0: |
||||
for idx, time in enumerate(times): |
||||
accs[idx] += m * (1 + math.erf((t - time) / s_sqrt2)) |
||||
if (m < 0) and (s_sqrt2 > 0): |
||||
for idx, time in enumerate(times): |
||||
accs[idx] += 1 |
||||
if s_sqrt2 == 0: |
||||
return values |
||||
return accs |
||||
|
||||
def vals(self, line, vector, times, sd=0): |
||||
return self._vals(line, vector, times, sd) |
||||
|
||||
def val(self, line, vector, time=TMAX, sd=0): |
||||
return self.capture_wave(line, vector, time, sd)[0] |
||||
|
||||
def vals_ppo(self, o, vector, times, sd=0): |
||||
return self._vals(self.ppo_offset + o, vector, times, sd) |
||||
|
||||
def val_ppo(self, o, vector, time=TMAX, sd=0): |
||||
if not self.lst_eat_valid: |
||||
self.capture(time, sd) |
||||
return self.cdata[o, vector, 0] |
||||
|
||||
def capture_wave(self, line, vector, time=TMAX, sd=0.0, seed=1): |
||||
s_sqrt2 = sd * math.sqrt(2) |
||||
m = 0.5 |
||||
acc = 0.0 |
||||
eat = TMAX |
||||
lst = TMIN |
||||
tog = 0 |
||||
ovl = 0 |
||||
val = int(0) |
||||
final = int(0) |
||||
for t in self.wave(line, vector): |
||||
if t >= TMAX: |
||||
if t == TMAX_OVL: |
||||
ovl = 1 |
||||
break |
||||
m = -m |
||||
final ^= 1 |
||||
if t < time: |
||||
val ^= 1 |
||||
if t <= TMIN: continue |
||||
if s_sqrt2 > 0: |
||||
acc += m * (1 + math.erf((t - time) / s_sqrt2)) |
||||
eat = min(eat, t) |
||||
lst = max(lst, t) |
||||
tog += 1 |
||||
if s_sqrt2 > 0: |
||||
if m < 0: |
||||
acc += 1 |
||||
if acc >= 0.99: |
||||
val = 1 |
||||
elif acc > 0.01: |
||||
seed = (seed << 4) + (vector << 20) + (line-self.ppo_offset << 1) |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
rnd = float((seed >> 8) & 0xffffff) / float(1 << 24) |
||||
val = rnd < acc |
||||
else: |
||||
val = 0 |
||||
else: |
||||
acc = val |
||||
|
||||
return acc, val, final, (val != final), eat, lst, ovl |
||||
|
||||
|
||||
@numba.njit |
||||
def level_eval(ops, op_start, op_stop, state, sat, st_start, st_stop, line_times, sdata, sd, seed): |
||||
overflows = 0 |
||||
for op_idx in range(op_start, op_stop): |
||||
op = ops[op_idx] |
||||
for st_idx in range(st_start, st_stop): |
||||
overflows += wave_eval(op, state, sat, st_idx, line_times, sdata[st_idx], sd, seed) |
||||
return overflows |
||||
|
||||
|
||||
@numba.njit |
||||
def rand_gauss(seed, sd): |
||||
clamp = 0.5 |
||||
if sd <= 0.0: |
||||
return 1.0 |
||||
while True: |
||||
x = -6.0 |
||||
for _ in range(12): |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
x += float((seed >> 8) & 0xffffff) / float(1 << 24) |
||||
x *= sd |
||||
if abs(x) <= clamp: |
||||
break |
||||
return x + 1.0 |
||||
|
||||
|
||||
@numba.njit |
||||
def wave_eval(op, state, sat, st_idx, line_times, sdata, sd=0.0, seed=0): |
||||
lut, z_idx, a_idx, b_idx = op |
||||
overflows = int(0) |
||||
|
||||
_seed = (seed << 4) + (z_idx << 20) + (st_idx << 1) |
||||
|
||||
a_mem = sat[a_idx, 0] |
||||
b_mem = sat[b_idx, 0] |
||||
z_mem, z_cap, _ = sat[z_idx] |
||||
|
||||
a_cur = int(0) |
||||
b_cur = int(0) |
||||
z_cur = lut & 1 |
||||
if z_cur == 1: |
||||
state[z_mem, st_idx] = TMIN |
||||
|
||||
a = state[a_mem, st_idx] + line_times[a_idx, 0, z_cur] * rand_gauss(_seed ^ a_mem ^ z_cur, sd) * sdata[0] |
||||
if int(sdata[1]) == a_idx: a += sdata[2+z_cur] |
||||
b = state[b_mem, st_idx] + line_times[b_idx, 0, z_cur] * rand_gauss(_seed ^ b_mem ^ z_cur, sd) * sdata[0] |
||||
if int(sdata[1]) == b_idx: b += sdata[2+z_cur] |
||||
|
||||
previous_t = TMIN |
||||
|
||||
current_t = min(a, b) |
||||
inputs = int(0) |
||||
|
||||
while current_t < TMAX: |
||||
z_val = z_cur & 1 |
||||
if b < a: |
||||
b_cur += 1 |
||||
b = state[b_mem + b_cur, st_idx] |
||||
b += line_times[b_idx, 0, z_val ^ 1] * rand_gauss(_seed ^ b_mem ^ z_val ^ 1, sd) * sdata[0] |
||||
thresh = line_times[b_idx, 1, z_val] * rand_gauss(_seed ^ b_mem ^ z_val, sd) * sdata[0] |
||||
if int(sdata[1]) == b_idx: |
||||
b += sdata[2+(z_val^1)] |
||||
thresh += sdata[2+z_val] |
||||
inputs ^= 2 |
||||
next_t = b |
||||
else: |
||||
a_cur += 1 |
||||
a = state[a_mem + a_cur, st_idx] |
||||
a += line_times[a_idx, 0, z_val ^ 1] * rand_gauss(_seed ^ a_mem ^ z_val ^ 1, sd) * sdata[0] |
||||
thresh = line_times[a_idx, 1, z_val] * rand_gauss(_seed ^ a_mem ^ z_val, sd) * sdata[0] |
||||
if int(sdata[1]) == a_idx: |
||||
a += sdata[2+(z_val^1)] |
||||
thresh += sdata[2+z_val] |
||||
inputs ^= 1 |
||||
next_t = a |
||||
|
||||
if (z_cur & 1) != ((lut >> inputs) & 1): |
||||
# we generate a toggle in z_mem, if: |
||||
# ( it is the first toggle in z_mem OR |
||||
# following toggle is earlier OR |
||||
# pulse is wide enough ) AND enough space in z_mem. |
||||
if z_cur == 0 or next_t < current_t or (current_t - previous_t) > thresh: |
||||
if z_cur < (z_cap - 1): |
||||
state[z_mem + z_cur, st_idx] = current_t |
||||
previous_t = current_t |
||||
z_cur += 1 |
||||
else: |
||||
overflows += 1 |
||||
previous_t = state[z_mem + z_cur - 1, st_idx] |
||||
z_cur -= 1 |
||||
else: |
||||
z_cur -= 1 |
||||
if z_cur > 0: |
||||
previous_t = state[z_mem + z_cur - 1, st_idx] |
||||
else: |
||||
previous_t = TMIN |
||||
current_t = min(a, b) |
||||
|
||||
if overflows > 0: |
||||
state[z_mem + z_cur, st_idx] = TMAX_OVL |
||||
else: |
||||
state[z_mem + z_cur, st_idx] = a if a > b else b # propagate overflow flags by storing biggest TMAX from input |
||||
|
||||
return overflows |
||||
|
||||
|
||||
|
||||
class WaveSimCuda(WaveSim): |
||||
"""A GPU-accelerated waveform-based combinational logic timing simulator. |
||||
|
||||
The API is the same as for :py:class:`WaveSim`. |
||||
All internal memories are mirrored into GPU memory upon construction. |
||||
Some operations like access to single waveforms can involve large communication overheads. |
||||
""" |
||||
def __init__(self, circuit, timing, sims=8, wavecaps=16, strip_forks=False, keep_waveforms=True): |
||||
super().__init__(circuit, timing, sims, wavecaps, strip_forks, keep_waveforms) |
||||
|
||||
self.tdata = np.zeros((len(self.interface), 3, (sims - 1) // 8 + 1), dtype='uint8') |
||||
|
||||
self.d_state = cuda.to_device(self.state) |
||||
self.d_sat = cuda.to_device(self.sat) |
||||
self.d_ops = cuda.to_device(self.ops) |
||||
self.d_timing = cuda.to_device(self.timing) |
||||
self.d_tdata = cuda.to_device(self.tdata) |
||||
self.d_cdata = cuda.to_device(self.cdata) |
||||
self.d_sdata = cuda.to_device(self.sdata) |
||||
|
||||
self._block_dim = (32, 16) |
||||
|
||||
def __repr__(self): |
||||
total_mem = self.state.nbytes + self.sat.nbytes + self.ops.nbytes + self.timing.nbytes + \ |
||||
self.tdata.nbytes + self.cdata.nbytes |
||||
return f'<WaveSimCuda {self.circuit.name} sims={self.sims} ops={len(self.ops)} ' + \ |
||||
f'levels={len(self.level_starts)} mem={hr_bytes(total_mem)}>' |
||||
|
||||
def get_line_delay(self, line, polarity): |
||||
return self.d_timing[line, 0, polarity] |
||||
|
||||
def set_line_delay(self, line, polarity, delay): |
||||
self.d_timing[line, 0, polarity] = delay |
||||
|
||||
def sdata_to_device(self): |
||||
cuda.to_device(self.sdata, to=self.d_sdata) |
||||
|
||||
def assign(self, vectors, time=0.0, offset=0): |
||||
assert (offset % 8) == 0 |
||||
byte_offset = offset // 8 |
||||
assert byte_offset < vectors.data.shape[-1] |
||||
pdim = min(vectors.data.shape[-1] - byte_offset, self.tdata.shape[-1]) |
||||
|
||||
self.tdata[..., 0:pdim] = vectors.data[..., byte_offset:pdim + byte_offset] |
||||
if vectors.m == 2: |
||||
self.tdata[:, 2, 0:pdim] = 0 |
||||
cuda.to_device(self.tdata, to=self.d_tdata) |
||||
|
||||
grid_dim = self._grid_dim(self.sims, len(self.interface)) |
||||
assign_kernel[grid_dim, self._block_dim](self.d_state, self.d_sat, self.ppi_offset, |
||||
len(self.interface), self.d_tdata, time) |
||||
|
||||
def _grid_dim(self, x, y): |
||||
gx = math.ceil(x / self._block_dim[0]) |
||||
gy = math.ceil(y / self._block_dim[1]) |
||||
return gx, gy |
||||
|
||||
def propagate(self, sims=None, sd=0.0, seed=1): |
||||
sims = min(sims or self.sims, self.sims) |
||||
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
||||
grid_dim = self._grid_dim(sims, op_stop - op_start) |
||||
wave_kernel[grid_dim, self._block_dim](self.d_ops, op_start, op_stop, self.d_state, self.sat, int(0), |
||||
sims, self.d_timing, self.d_sdata, sd, seed) |
||||
cuda.synchronize() |
||||
self.lst_eat_valid = False |
||||
|
||||
def wave(self, line, vector): |
||||
if line < 0: |
||||
return [TMAX] |
||||
mem, wcap, _ = self.sat[line] |
||||
if mem < 0: |
||||
return [TMAX] |
||||
return self.d_state[mem:mem + wcap, vector] |
||||
|
||||
def capture(self, time=TMAX, sd=0, seed=1, cdata=None, offset=0): |
||||
grid_dim = self._grid_dim(self.sims, len(self.interface)) |
||||
capture_kernel[grid_dim, self._block_dim](self.d_state, self.d_sat, self.ppo_offset, |
||||
self.d_cdata, time, sd * math.sqrt(2), seed) |
||||
self.cdata[...] = self.d_cdata |
||||
if cdata is not None: |
||||
assert offset < cdata.shape[1] |
||||
cap_dim = min(cdata.shape[1] - offset, self.sims) |
||||
cdata[:, offset:cap_dim + offset] = self.cdata[:, 0:cap_dim] |
||||
self.lst_eat_valid = True |
||||
return self.cdata |
||||
|
||||
def reassign(self, time=0.0): |
||||
grid_dim = self._grid_dim(self.sims, len(self.interface)) |
||||
reassign_kernel[grid_dim, self._block_dim](self.d_state, self.d_sat, self.ppi_offset, self.ppo_offset, |
||||
self.d_cdata, time) |
||||
cuda.synchronize() |
||||
|
||||
def wavecaps(self): |
||||
gx = math.ceil(len(self.circuit.lines) / 512) |
||||
wavecaps_kernel[gx, 512](self.d_state, self.d_sat, self.sims) |
||||
self.sat[...] = self.d_sat |
||||
return self.sat[..., 2] |
||||
|
||||
|
||||
@cuda.jit() |
||||
def wavecaps_kernel(state, sat, sims): |
||||
idx = cuda.grid(1) |
||||
if idx >= len(sat): return |
||||
|
||||
lidx, lcap, _ = sat[idx] |
||||
if lidx < 0: return |
||||
|
||||
wcap = 0 |
||||
for sidx in range(sims): |
||||
for tidx in range(lcap): |
||||
t = state[lidx + tidx, sidx] |
||||
if tidx > wcap: |
||||
wcap = tidx |
||||
if t >= TMAX: break |
||||
|
||||
sat[idx, 2] = wcap + 1 |
||||
|
||||
|
||||
@cuda.jit() |
||||
def reassign_kernel(state, sat, ppi_offset, ppo_offset, cdata, ppi_time): |
||||
vector, y = cuda.grid(2) |
||||
if vector >= state.shape[-1]: return |
||||
if ppo_offset + y >= len(sat): return |
||||
|
||||
ppo, _, _ = sat[ppo_offset + y] |
||||
ppi, ppi_cap, _ = sat[ppi_offset + y] |
||||
if ppo < 0: return |
||||
if ppi < 0: return |
||||
|
||||
ppo_val = int(cdata[y, vector, 1]) |
||||
ppi_val = int(0) |
||||
for tidx in range(ppi_cap): |
||||
t = state[ppi + tidx, vector] |
||||
if t >= TMAX: break |
||||
ppi_val ^= 1 |
||||
|
||||
# make new waveform at PPI |
||||
toggle = 0 |
||||
if ppi_val: |
||||
state[ppi + toggle, vector] = TMIN |
||||
toggle += 1 |
||||
if ppi_val != ppo_val: |
||||
state[ppi + toggle, vector] = ppi_time |
||||
toggle += 1 |
||||
state[ppi + toggle, vector] = TMAX |
||||
|
||||
|
||||
@cuda.jit() |
||||
def capture_kernel(state, sat, ppo_offset, cdata, time, s_sqrt2, seed): |
||||
x, y = cuda.grid(2) |
||||
if ppo_offset + y >= len(sat): return |
||||
line, tdim, _ = sat[ppo_offset + y] |
||||
if line < 0: return |
||||
if x >= state.shape[-1]: return |
||||
vector = x |
||||
m = 0.5 |
||||
acc = 0.0 |
||||
eat = TMAX |
||||
lst = TMIN |
||||
tog = 0 |
||||
ovl = 0 |
||||
val = int(0) |
||||
final = int(0) |
||||
for tidx in range(tdim): |
||||
t = state[line + tidx, vector] |
||||
if t >= TMAX: |
||||
if t == TMAX_OVL: |
||||
ovl = 1 |
||||
break |
||||
m = -m |
||||
final ^= 1 |
||||
if t < time: |
||||
val ^= 1 |
||||
if t <= TMIN: continue |
||||
if s_sqrt2 > 0: |
||||
acc += m * (1 + math.erf((t - time) / s_sqrt2)) |
||||
eat = min(eat, t) |
||||
lst = max(lst, t) |
||||
tog += 1 |
||||
if s_sqrt2 > 0: |
||||
if m < 0: |
||||
acc += 1 |
||||
if acc >= 0.99: |
||||
val = 1 |
||||
elif acc > 0.01: |
||||
seed = (seed << 4) + (vector << 20) + (y << 1) |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
rnd = float((seed >> 8) & 0xffffff) / float(1 << 24) |
||||
val = rnd < acc |
||||
else: |
||||
val = 0 |
||||
else: |
||||
acc = val |
||||
|
||||
cdata[y, vector, 0] = acc |
||||
cdata[y, vector, 1] = val |
||||
cdata[y, vector, 2] = final |
||||
cdata[y, vector, 3] = (val != final) |
||||
cdata[y, vector, 4] = eat |
||||
cdata[y, vector, 5] = lst |
||||
cdata[y, vector, 6] = ovl |
||||
|
||||
|
||||
@cuda.jit() |
||||
def assign_kernel(state, sat, ppi_offset, intf_len, tdata, time): |
||||
x, y = cuda.grid(2) |
||||
if y >= intf_len: return |
||||
line = sat[ppi_offset + y, 0] |
||||
if line < 0: return |
||||
sdim = state.shape[-1] |
||||
if x >= sdim: return |
||||
vector = x |
||||
a0 = tdata[y, 0, vector // 8] |
||||
a1 = tdata[y, 1, vector // 8] |
||||
a2 = tdata[y, 2, vector // 8] |
||||
m = np.uint8(1 << (7 - (vector % 8))) |
||||
toggle = 0 |
||||
if a1 & m: |
||||
state[line + toggle, x] = TMIN |
||||
toggle += 1 |
||||
if (a2 & m) and ((a0 & m) != (a1 & m)): |
||||
state[line + toggle, x] = time |
||||
toggle += 1 |
||||
state[line + toggle, x] = TMAX |
||||
|
||||
|
||||
@cuda.jit(device=True) |
||||
def rand_gauss_dev(seed, sd): |
||||
clamp = 0.5 |
||||
if sd <= 0.0: |
||||
return 1.0 |
||||
while True: |
||||
x = -6.0 |
||||
for _ in range(12): |
||||
seed = int(0xDEECE66D) * seed + 0xB |
||||
x += float((seed >> 8) & 0xffffff) / float(1 << 24) |
||||
x *= sd |
||||
if abs(x) <= clamp: |
||||
break |
||||
return x + 1.0 |
||||
|
||||
|
||||
@cuda.jit() |
||||
def wave_kernel(ops, op_start, op_stop, state, sat, st_start, st_stop, line_times, sdata, sd, seed): |
||||
x, y = cuda.grid(2) |
||||
st_idx = st_start + x |
||||
op_idx = op_start + y |
||||
if st_idx >= st_stop: return |
||||
if op_idx >= op_stop: return |
||||
lut = ops[op_idx, 0] |
||||
z_idx = ops[op_idx, 1] |
||||
a_idx = ops[op_idx, 2] |
||||
b_idx = ops[op_idx, 3] |
||||
overflows = int(0) |
||||
sdata = sdata[st_idx] |
||||
|
||||
_seed = (seed << 4) + (z_idx << 20) + (st_idx << 1) |
||||
|
||||
a_mem = sat[a_idx, 0] |
||||
b_mem = sat[b_idx, 0] |
||||
z_mem, z_cap, _ = sat[z_idx] |
||||
|
||||
a_cur = int(0) |
||||
b_cur = int(0) |
||||
z_cur = lut & 1 |
||||
if z_cur == 1: |
||||
state[z_mem, st_idx] = TMIN |
||||
|
||||
a = state[a_mem, st_idx] + line_times[a_idx, 0, z_cur] * rand_gauss_dev(_seed ^ a_mem ^ z_cur, sd) * sdata[0] |
||||
if int(sdata[1]) == a_idx: a += sdata[2+z_cur] |
||||
b = state[b_mem, st_idx] + line_times[b_idx, 0, z_cur] * rand_gauss_dev(_seed ^ b_mem ^ z_cur, sd) * sdata[0] |
||||
if int(sdata[1]) == b_idx: b += sdata[2+z_cur] |
||||
|
||||
previous_t = TMIN |
||||
|
||||
current_t = min(a, b) |
||||
inputs = int(0) |
||||
|
||||
while current_t < TMAX: |
||||
z_val = z_cur & 1 |
||||
if b < a: |
||||
b_cur += 1 |
||||
b = state[b_mem + b_cur, st_idx] |
||||
b += line_times[b_idx, 0, z_val ^ 1] * rand_gauss_dev(_seed ^ b_mem ^ z_val ^ 1, sd) * sdata[0] |
||||
thresh = line_times[b_idx, 1, z_val] * rand_gauss_dev(_seed ^ b_mem ^ z_val, sd) * sdata[0] |
||||
if int(sdata[1]) == b_idx: |
||||
b += sdata[2+(z_val^1)] |
||||
thresh += sdata[2+z_val] |
||||
inputs ^= 2 |
||||
next_t = b |
||||
else: |
||||
a_cur += 1 |
||||
a = state[a_mem + a_cur, st_idx] |
||||
a += line_times[a_idx, 0, z_val ^ 1] * rand_gauss_dev(_seed ^ a_mem ^ z_val ^ 1, sd) * sdata[0] |
||||
thresh = line_times[a_idx, 1, z_val] * rand_gauss_dev(_seed ^ a_mem ^ z_val, sd) * sdata[0] |
||||
if int(sdata[1]) == a_idx: |
||||
a += sdata[2+(z_val^1)] |
||||
thresh += sdata[2+z_val] |
||||
inputs ^= 1 |
||||
next_t = a |
||||
|
||||
if (z_cur & 1) != ((lut >> inputs) & 1): |
||||
# we generate a toggle in z_mem, if: |
||||
# ( it is the first toggle in z_mem OR |
||||
# following toggle is earlier OR |
||||
# pulse is wide enough ) AND enough space in z_mem. |
||||
if z_cur == 0 or next_t < current_t or (current_t - previous_t) > thresh: |
||||
if z_cur < (z_cap - 1): |
||||
state[z_mem + z_cur, st_idx] = current_t |
||||
previous_t = current_t |
||||
z_cur += 1 |
||||
else: |
||||
overflows += 1 |
||||
previous_t = state[z_mem + z_cur - 1, st_idx] |
||||
z_cur -= 1 |
||||
else: |
||||
z_cur -= 1 |
||||
if z_cur > 0: |
||||
previous_t = state[z_mem + z_cur - 1, st_idx] |
||||
else: |
||||
previous_t = TMIN |
||||
current_t = min(a, b) |
||||
|
||||
if overflows > 0: |
||||
state[z_mem + z_cur, st_idx] = TMAX_OVL |
||||
else: |
||||
state[z_mem + z_cur, st_idx] = a if a > b else b # propagate overflow flags by storing biggest TMAX from input |
@ -1,166 +0,0 @@
@@ -1,166 +0,0 @@
|
||||
import numpy as np |
||||
|
||||
from kyupy.wave_sim4 import WaveSim, WaveSimCuda, wave_eval_cpu, TMIN, TMAX |
||||
from kyupy.logic_sim import LogicSim |
||||
from kyupy import verilog, sdf, logic, bench |
||||
from kyupy.logic import MVArray, BPArray |
||||
from kyupy.sim import SimPrim |
||||
|
||||
|
||||
def test_nand_delays(): |
||||
op = (SimPrim.NAND4, 4, 0, 1, 2, 3) |
||||
#op = (0b0111, 4, 0, 1) |
||||
c = np.full((5*16, 1), TMAX) # 5 waveforms of capacity 16 |
||||
vat = np.zeros((5, 3), dtype='int') |
||||
for i in range(5): vat[i] = i*16, 16, 0 # 1:1 mapping |
||||
|
||||
# SDF specifies IOPATH delays with respect to output polarity |
||||
# SDF pulse rejection value is determined by IOPATH causing last transition and polarity of last transition |
||||
line_times = np.zeros((5, 2, 2)) |
||||
line_times[0, 0, 0] = 0.1 # A -> Z rise delay |
||||
line_times[0, 0, 1] = 0.2 # A -> Z fall delay |
||||
line_times[0, 1, 0] = 0.1 # A -> Z negative pulse limit (terminate in rising Z) |
||||
line_times[0, 1, 1] = 0.2 # A -> Z positive pulse limit |
||||
line_times[1, :, 0] = 0.3 # as above for B -> Z |
||||
line_times[1, :, 1] = 0.4 |
||||
line_times[2, :, 0] = 0.5 # as above for C -> Z |
||||
line_times[2, :, 1] = 0.6 |
||||
line_times[3, :, 0] = 0.7 # as above for D -> Z |
||||
line_times[3, :, 1] = 0.8 |
||||
|
||||
sdata = np.asarray([1, -1, 0, 0], dtype='float32') |
||||
|
||||
def wave_assert(inputs, output): |
||||
for i, a in zip(inputs, c.reshape(-1,16)): a[:len(i)] = i |
||||
wave_eval_cpu(op, c, vat, 0, line_times, sdata) |
||||
for i, v in enumerate(output): np.testing.assert_allclose(c.reshape(-1,16)[4,i], v) |
||||
|
||||
wave_assert([[TMAX,TMAX],[TMAX,TMAX],[TMIN,TMAX],[TMIN,TMAX]], [TMIN,TMAX]) # NAND(0,0,1,1) => 1 |
||||
wave_assert([[TMIN,TMAX],[TMAX,TMAX],[TMIN,TMAX],[TMIN,TMAX]], [TMIN,TMAX]) # NAND(1,0,1,1) => 1 |
||||
wave_assert([[TMIN,TMAX],[TMIN,TMAX],[TMIN,TMAX],[TMIN,TMAX]], [TMAX]) # NAND(1,1,1,1) => 0 |
||||
|
||||
# Keep inputs C=1 and D=1. |
||||
wave_assert([[1,TMAX],[2,TMAX]], [TMIN,2.4,TMAX]) # _/⎺⎺⎺ NAND __/⎺⎺ => ⎺⎺⎺\___ (B->Z fall delay) |
||||
wave_assert([[TMIN,TMAX],[TMIN,2,TMAX]], [2.3,TMAX]) # ⎺⎺⎺⎺⎺ NAND ⎺⎺\__ => ___/⎺⎺⎺ (B->Z rise delay) |
||||
wave_assert([[TMIN,TMAX],[TMIN,2,2.35,TMAX]], [2.3,2.75,TMAX]) # ⎺⎺⎺⎺⎺ NAND ⎺\_/⎺ => __/⎺⎺\_ (pos pulse, .35@B -> .45@Z) |
||||
wave_assert([[TMIN,TMAX],[TMIN,2,2.25,TMAX]], [TMAX]) # ⎺⎺⎺⎺⎺ NAND ⎺\_/⎺ => _______ (pos pulse, .25@B -> .35@Z, filtered) |
||||
wave_assert([[TMIN,TMAX],[2,2.45,TMAX]], [TMIN,2.4,2.75,TMAX]) # ⎺⎺⎺⎺⎺ NAND _/⎺\_ => ⎺⎺\_/⎺⎺ (neg pulse, .45@B -> .35@Z) |
||||
wave_assert([[TMIN,TMAX],[2,2.35,TMAX]], [TMIN,TMAX]) # ⎺⎺⎺⎺⎺ NAND _/⎺\_ => ⎺⎺⎺⎺⎺⎺⎺ (neg pulse, .35@B -> .25@Z, filtered) |
||||
|
||||
|
||||
def test_tiny_circuit(): |
||||
c = bench.parse('input(x, y) output(a, o, n) a=and(x,y) o=or(x,y) n=not(x)') |
||||
lt = np.zeros((len(c.lines), 2, 2)) |
||||
lt[:,0,:] = 1.0 # unit delay for all lines |
||||
wsim = WaveSim(c, lt) |
||||
assert len(wsim.s) == 5 |
||||
|
||||
# values for x |
||||
wsim.s[0,0,:3] = 0, 0.1, 0 |
||||
wsim.s[0,1,:3] = 0, 0.2, 1 |
||||
wsim.s[0,2,:3] = 1, 0.3, 0 |
||||
wsim.s[0,3,:3] = 1, 0.4, 1 |
||||
|
||||
# values for y |
||||
wsim.s[1,0,:3] = 1, 0.5, 0 |
||||
wsim.s[1,1,:3] = 1, 0.6, 0 |
||||
wsim.s[1,2,:3] = 1, 0.7, 0 |
||||
wsim.s[1,3,:3] = 0, 0.8, 1 |
||||
|
||||
wsim.s_to_c() |
||||
|
||||
x_c_loc = wsim.vat[wsim.ppi_offset+0, 0] # check x waveforms |
||||
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 0], [TMAX, TMAX, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 1], [0.2, TMAX, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 2], [TMIN, 0.3, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 3], [TMIN, TMAX, TMAX]) |
||||
|
||||
y_c_loc = wsim.vat[wsim.ppi_offset+1, 0] # check y waveforms |
||||
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 0], [TMIN, 0.5, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 1], [TMIN, 0.6, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 2], [TMIN, 0.7, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 3], [0.8, TMAX, TMAX]) |
||||
|
||||
wsim.c_prop() |
||||
|
||||
a_c_loc = wsim.vat[wsim.ppo_offset+2, 0] # check a waveforms |
||||
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 0], [TMAX, TMAX, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 1], [1.2, 1.6, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 2], [TMIN, 1.3, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 3], [1.8, TMAX, TMAX]) |
||||
|
||||
o_c_loc = wsim.vat[wsim.ppo_offset+3, 0] # check o waveforms |
||||
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 0], [TMIN, 1.5, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 1], [TMIN, TMAX, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 2], [TMIN, 1.7, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 3], [TMIN, TMAX, TMAX]) |
||||
|
||||
n_c_loc = wsim.vat[wsim.ppo_offset+4, 0] # check n waveforms |
||||
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 0], [TMIN, TMAX, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 1], [TMIN, 1.2, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 2], [1.3, TMAX, TMAX]) |
||||
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 3], [TMAX, TMAX, TMAX]) |
||||
|
||||
wsim.c_to_s() |
||||
|
||||
# check a captures |
||||
np.testing.assert_allclose(wsim.s[2, 0, 3:7], [0, TMAX, TMIN, 0]) |
||||
np.testing.assert_allclose(wsim.s[2, 1, 3:7], [0, 1.2, 1.6, 0]) |
||||
np.testing.assert_allclose(wsim.s[2, 2, 3:7], [1, 1.3, 1.3, 0]) |
||||
np.testing.assert_allclose(wsim.s[2, 3, 3:7], [0, 1.8, 1.8, 1]) |
||||
|
||||
# check o captures |
||||
np.testing.assert_allclose(wsim.s[3, 0, 3:7], [1, 1.5, 1.5, 0]) |
||||
np.testing.assert_allclose(wsim.s[3, 1, 3:7], [1, TMAX, TMIN, 1]) |
||||
np.testing.assert_allclose(wsim.s[3, 2, 3:7], [1, 1.7, 1.7, 0]) |
||||
np.testing.assert_allclose(wsim.s[3, 3, 3:7], [1, TMAX, TMIN, 1]) |
||||
|
||||
# check o captures |
||||
np.testing.assert_allclose(wsim.s[4, 0, 3:7], [1, TMAX, TMIN, 1]) |
||||
np.testing.assert_allclose(wsim.s[4, 1, 3:7], [1, 1.2, 1.2, 0]) |
||||
np.testing.assert_allclose(wsim.s[4, 2, 3:7], [0, 1.3, 1.3, 1]) |
||||
np.testing.assert_allclose(wsim.s[4, 3, 3:7], [0, TMAX, TMIN, 0]) |
||||
|
||||
|
||||
def compare_to_logic_sim(wsim: WaveSim): |
||||
tests = MVArray((len(wsim.s_nodes), wsim.sims)) |
||||
choices = np.asarray([logic.ZERO, logic.ONE, logic.RISE, logic.FALL], dtype=np.uint8) |
||||
rng = np.random.default_rng(10) |
||||
tests.data[...] = rng.choice(choices, tests.data.shape) |
||||
|
||||
wsim.s[..., 0] = (tests.data & 2) >> 1 |
||||
wsim.s[..., 3] = (tests.data & 2) >> 1 |
||||
wsim.s[..., 1] = 0.0 |
||||
wsim.s[..., 2] = tests.data & 1 |
||||
wsim.s[..., 6] = tests.data & 1 |
||||
|
||||
wsim.s_to_c() |
||||
wsim.c_prop() |
||||
wsim.c_to_s() |
||||
|
||||
resp = MVArray(tests) |
||||
resp.data[...] = wsim.s[..., 6].astype(np.uint8) | (wsim.s[..., 3].astype(np.uint8)<<1) |
||||
resp.data |= ((resp.data ^ (resp.data >> 1)) & 1) << 2 # transitions |
||||
|
||||
tests_bp = BPArray(tests) |
||||
lsim = LogicSim(wsim.circuit, len(tests_bp)) |
||||
lsim.assign(tests_bp) |
||||
lsim.propagate() |
||||
exp_bp = BPArray(tests_bp) |
||||
lsim.capture(exp_bp) |
||||
exp = MVArray(exp_bp) |
||||
|
||||
for i in range(8): |
||||
exp_str = exp[i].replace('P', '0').replace('N', '1') |
||||
res_str = resp[i].replace('P', '0').replace('N', '1') |
||||
assert res_str == exp_str |
||||
|
||||
|
||||
def test_b14(b14_circuit, b14_timing): |
||||
compare_to_logic_sim(WaveSim(b14_circuit, b14_timing, 8)) |
||||
|
||||
def test_b14_strip_forks(b14_circuit, b14_timing): |
||||
compare_to_logic_sim(WaveSim(b14_circuit, b14_timing, 8, strip_forks=True)) |
||||
|
||||
def test_b14_cuda(b14_circuit, b14_timing): |
||||
compare_to_logic_sim(WaveSimCuda(b14_circuit, b14_timing, 8, strip_forks=True)) |
@ -0,0 +1,138 @@
@@ -0,0 +1,138 @@
|
||||
import numpy as np |
||||
|
||||
from kyupy.wave_sim_old import WaveSim, WaveSimCuda, wave_eval, TMIN, TMAX |
||||
from kyupy.logic_sim import LogicSim |
||||
from kyupy import verilog, sdf, logic |
||||
from kyupy.logic import MVArray, BPArray |
||||
|
||||
|
||||
def test_wave_eval(): |
||||
# SDF specifies IOPATH delays with respect to output polarity |
||||
# SDF pulse rejection value is determined by IOPATH causing last transition and polarity of last transition |
||||
line_times = np.zeros((3, 2, 2)) |
||||
line_times[0, 0, 0] = 0.1 # A -> Z rise delay |
||||
line_times[0, 0, 1] = 0.2 # A -> Z fall delay |
||||
line_times[0, 1, 0] = 0.1 # A -> Z negative pulse limit (terminate in rising Z) |
||||
line_times[0, 1, 1] = 0.2 # A -> Z positive pulse limit |
||||
line_times[1, 0, 0] = 0.3 # as above for B -> Z |
||||
line_times[1, 0, 1] = 0.4 |
||||
line_times[1, 1, 0] = 0.3 |
||||
line_times[1, 1, 1] = 0.4 |
||||
|
||||
state = np.zeros((3*16, 1)) + TMAX # 3 waveforms of capacity 16 |
||||
state[::16, 0] = 16 # first entry is capacity |
||||
a = state[0:16, 0] |
||||
b = state[16:32, 0] |
||||
z = state[32:, 0] |
||||
sat = np.zeros((3, 3), dtype='int') |
||||
sat[0] = 0, 16, 0 |
||||
sat[1] = 16, 16, 0 |
||||
sat[2] = 32, 16, 0 |
||||
|
||||
sdata = np.asarray([1, -1, 0, 0], dtype='float32') |
||||
|
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == TMIN |
||||
|
||||
a[0] = TMIN |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == TMIN |
||||
|
||||
b[0] = TMIN |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == TMAX |
||||
|
||||
a[0] = 1 # A _/^^^ |
||||
b[0] = 2 # B __/^^ |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == TMIN # ^^^\___ B -> Z fall delay |
||||
assert z[1] == 2.4 |
||||
assert z[2] == TMAX |
||||
|
||||
a[0] = TMIN # A ^^^^^^ |
||||
b[0] = TMIN # B ^^^\__ |
||||
b[1] = 2 |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == 2.3 # ___/^^^ B -> Z rise delay |
||||
assert z[1] == TMAX |
||||
|
||||
# pos pulse of 0.35 at B -> 0.45 after delays |
||||
a[0] = TMIN # A ^^^^^^^^ |
||||
b[0] = TMIN |
||||
b[1] = 2 # B ^^\__/^^ |
||||
b[2] = 2.35 |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == 2.3 # __/^^\__ |
||||
assert z[1] == 2.75 |
||||
assert z[2] == TMAX |
||||
|
||||
# neg pulse of 0.45 at B -> 0.35 after delays |
||||
a[0] = TMIN # A ^^^^^^^^ |
||||
b[0] = 2 # B __/^^\__ |
||||
b[1] = 2.45 |
||||
b[2] = TMAX |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == TMIN # ^^\__/^^ |
||||
assert z[1] == 2.4 |
||||
assert z[2] == 2.75 |
||||
assert z[3] == TMAX |
||||
|
||||
# neg pulse of 0.35 at B -> 0.25 after delays (filtered) |
||||
a[0] = TMIN # A ^^^^^^^^ |
||||
b[0] = 2 # B __/^^\__ |
||||
b[1] = 2.35 |
||||
b[2] = TMAX |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == TMIN # ^^^^^^ |
||||
assert z[1] == TMAX |
||||
|
||||
# pos pulse of 0.25 at B -> 0.35 after delays (filtered) |
||||
a[0] = TMIN # A ^^^^^^^^ |
||||
b[0] = TMIN |
||||
b[1] = 2 # B ^^\__/^^ |
||||
b[2] = 2.25 |
||||
wave_eval((0b0111, 2, 0, 1), state, sat, 0, line_times, sdata) |
||||
assert z[0] == TMAX # ______ |
||||
|
||||
|
||||
def compare_to_logic_sim(wsim): |
||||
tests = MVArray((len(wsim.interface), wsim.sims)) |
||||
choices = np.asarray([logic.ZERO, logic.ONE, logic.RISE, logic.FALL], dtype=np.uint8) |
||||
rng = np.random.default_rng(10) |
||||
tests.data[...] = rng.choice(choices, tests.data.shape) |
||||
tests_bp = BPArray(tests) |
||||
wsim.assign(tests_bp) |
||||
wsim.propagate() |
||||
cdata = wsim.capture() |
||||
|
||||
resp = MVArray(tests) |
||||
|
||||
for iidx, inode in enumerate(wsim.interface): |
||||
if len(inode.ins) > 0: |
||||
for vidx in range(wsim.sims): |
||||
resp.data[iidx, vidx] = logic.ZERO if cdata[iidx, vidx, 0] < 0.5 else logic.ONE |
||||
# resp.set_value(vidx, iidx, 0 if cdata[iidx, vidx, 0] < 0.5 else 1) |
||||
|
||||
lsim = LogicSim(wsim.circuit, len(tests_bp)) |
||||
lsim.assign(tests_bp) |
||||
lsim.propagate() |
||||
exp_bp = BPArray(tests_bp) |
||||
lsim.capture(exp_bp) |
||||
exp = MVArray(exp_bp) |
||||
|
||||
for i in range(8): |
||||
exp_str = exp[i].replace('R', '1').replace('F', '0').replace('P', '0').replace('N', '1') |
||||
res_str = resp[i].replace('R', '1').replace('F', '0').replace('P', '0').replace('N', '1') |
||||
assert res_str == exp_str |
||||
|
||||
|
||||
def test_b14(b14_circuit, b14_timing): |
||||
compare_to_logic_sim(WaveSim(b14_circuit, b14_timing, 8)) |
||||
|
||||
|
||||
def test_b14_strip_forks(b14_circuit, b14_timing): |
||||
compare_to_logic_sim(WaveSim(b14_circuit, b14_timing, 8, strip_forks=True)) |
||||
|
||||
|
||||
def test_b14_cuda(b14_circuit, b14_timing): |
||||
compare_to_logic_sim(WaveSimCuda(b14_circuit, b14_timing, 8, strip_forks=True)) |
Loading…
Reference in new issue