|
|
@ -16,7 +16,7 @@ import math |
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
from . import numba, cuda, hr_bytes, sim |
|
|
|
from . import numba, cuda, hr_bytes, sim, cdiv |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TMAX = np.float32(2 ** 127) |
|
|
|
TMAX = np.float32(2 ** 127) |
|
|
@ -97,17 +97,15 @@ class WaveSim(sim.SimOps): |
|
|
|
self.c[self.pippi_c_locs+1] = np.choose(cond, [TMAX, TMAX, sins[1], TMAX]) |
|
|
|
self.c[self.pippi_c_locs+1] = np.choose(cond, [TMAX, TMAX, sins[1], TMAX]) |
|
|
|
self.c[self.pippi_c_locs+2] = TMAX |
|
|
|
self.c[self.pippi_c_locs+2] = TMAX |
|
|
|
|
|
|
|
|
|
|
|
def c_prop(self, sims=None, sd=0.0, seed=1): |
|
|
|
def c_prop(self, sims=None, seed=1): |
|
|
|
"""Propagates all waveforms from the (pseudo) primary inputs to the (pseudo) primary outputs. |
|
|
|
"""Propagates all waveforms from the (pseudo) primary inputs to the (pseudo) primary outputs. |
|
|
|
|
|
|
|
|
|
|
|
:param sims: Number of parallel simulations to execute. If None, all available simulations are performed. |
|
|
|
:param sims: Number of parallel simulations to execute. If None, all available simulations are performed. |
|
|
|
:param sd: Standard deviation for injection of random delay variation. Active, if value is positive. |
|
|
|
|
|
|
|
:param seed: Random seed for delay variations. |
|
|
|
:param seed: Random seed for delay variations. |
|
|
|
""" |
|
|
|
""" |
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, 0, sims, |
|
|
|
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, 0, sims, self.delays, self.params, seed) |
|
|
|
self.delays, self.params, sd, seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
"""Simulates a capture operation at all sequential elements and primary outputs. |
|
|
|
"""Simulates a capture operation at all sequential elements and primary outputs. |
|
|
@ -135,11 +133,7 @@ class WaveSim(sim.SimOps): |
|
|
|
self.s[2, self.ppio_s_locs] = self.s[8, self.ppio_s_locs] |
|
|
|
self.s[2, self.ppio_s_locs] = self.s[8, self.ppio_s_locs] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
def _wave_eval(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_idx, delays, param, seed=0): |
|
|
|
def wave_eval_cpu(op, cbuf, c_locs, c_caps, st_idx, delays, param, sd=0.0, seed=0): |
|
|
|
|
|
|
|
lut, z_idx, a_idx, b_idx, c_idx, d_idx = op |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# >>> same code as wave_eval_cpu (except rand_gauss_*pu()-calls) >>> |
|
|
|
|
|
|
|
overflows = int(0) |
|
|
|
overflows = int(0) |
|
|
|
|
|
|
|
|
|
|
|
if len(delays) > 1: |
|
|
|
if len(delays) > 1: |
|
|
@ -234,13 +228,21 @@ def wave_eval_cpu(op, cbuf, c_locs, c_caps, st_idx, delays, param, sd=0.0, seed= |
|
|
|
cbuf[z_mem + z_cur, st_idx] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
|
|
|
cbuf[z_mem + z_cur, st_idx] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_wave_eval_cpu = numba.njit(_wave_eval) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
@numba.njit |
|
|
|
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, st_start, st_stop, delays, params, sd, seed): |
|
|
|
def wave_eval_cpu(op, cbuf, c_locs, c_caps, st_idx, delays, param, seed=0): |
|
|
|
overflows = 0 |
|
|
|
lut, z_idx, a_idx, b_idx, c_idx, d_idx = op |
|
|
|
|
|
|
|
_wave_eval_cpu(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_idx, delays, param, seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
|
|
|
|
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, st_start, st_stop, delays, params, seed): |
|
|
|
for op_idx in range(op_start, op_stop): |
|
|
|
for op_idx in range(op_start, op_stop): |
|
|
|
op = ops[op_idx] |
|
|
|
op = ops[op_idx] |
|
|
|
for st_idx in range(st_start, st_stop): |
|
|
|
for st_idx in range(st_start, st_stop): |
|
|
|
wave_eval_cpu(op, c, c_locs, c_caps, st_idx, delays, params[st_idx], sd, seed) |
|
|
|
wave_eval_cpu(op, c, c_locs, c_caps, st_idx, delays, params[st_idx], seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
@numba.njit |
|
|
@ -313,17 +315,14 @@ class WaveSimCuda(WaveSim): |
|
|
|
grid_dim = self._grid_dim(self.sims, self.s_len) |
|
|
|
grid_dim = self._grid_dim(self.sims, self.s_len) |
|
|
|
wave_assign_gpu[grid_dim, self._block_dim](self.c, self.s, self.c_locs, self.ppi_offset) |
|
|
|
wave_assign_gpu[grid_dim, self._block_dim](self.c, self.s, self.c_locs, self.ppi_offset) |
|
|
|
|
|
|
|
|
|
|
|
def _grid_dim(self, x, y): |
|
|
|
def _grid_dim(self, x, y): return cdiv(x, self._block_dim[0]), cdiv(y, self._block_dim[1]) |
|
|
|
gx = math.ceil(x / self._block_dim[0]) |
|
|
|
|
|
|
|
gy = math.ceil(y / self._block_dim[1]) |
|
|
|
|
|
|
|
return gx, gy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def c_prop(self, sims=None, sd=0.0, seed=1): |
|
|
|
def c_prop(self, sims=None, seed=1): |
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
grid_dim = self._grid_dim(sims, op_stop - op_start) |
|
|
|
grid_dim = self._grid_dim(sims, op_stop - op_start) |
|
|
|
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, int(0), |
|
|
|
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, int(0), |
|
|
|
sims, self.delays, self.params, sd, seed) |
|
|
|
sims, self.delays, self.params, seed) |
|
|
|
cuda.synchronize() |
|
|
|
cuda.synchronize() |
|
|
|
|
|
|
|
|
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
@ -360,8 +359,11 @@ def wave_assign_gpu(c, s, c_locs, ppi_offset): |
|
|
|
c[c_loc+2, x] = TMAX |
|
|
|
c[c_loc+2, x] = TMAX |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_wave_eval_gpu = cuda.jit(_wave_eval, device=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cuda.jit() |
|
|
|
@cuda.jit() |
|
|
|
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, st_start, st_stop, delays, param, sd, seed): |
|
|
|
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, st_start, st_stop, delays, param, seed): |
|
|
|
x, y = cuda.grid(2) |
|
|
|
x, y = cuda.grid(2) |
|
|
|
st_idx = st_start + x |
|
|
|
st_idx = st_start + x |
|
|
|
op_idx = op_start + y |
|
|
|
op_idx = op_start + y |
|
|
@ -377,99 +379,7 @@ def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, st_start, st_sto |
|
|
|
|
|
|
|
|
|
|
|
param = param[st_idx] |
|
|
|
param = param[st_idx] |
|
|
|
|
|
|
|
|
|
|
|
# >>> same code as wave_eval_cpu (except rand_gauss_*pu()-calls) >>> |
|
|
|
_wave_eval_gpu(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_idx, delays, param, seed) |
|
|
|
overflows = int(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(delays) > 1: |
|
|
|
|
|
|
|
_rnd = (seed << 4) + (z_idx << 20) + (st_idx << 1) |
|
|
|
|
|
|
|
for _ in range(4): |
|
|
|
|
|
|
|
_rnd = int(0xDEECE66D) * _rnd + 0xB |
|
|
|
|
|
|
|
delays = delays[_rnd % len(delays)] |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
delays = delays[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a_mem = c_locs[a_idx] |
|
|
|
|
|
|
|
b_mem = c_locs[b_idx] |
|
|
|
|
|
|
|
c_mem = c_locs[c_idx] |
|
|
|
|
|
|
|
d_mem = c_locs[d_idx] |
|
|
|
|
|
|
|
z_mem = c_locs[z_idx] |
|
|
|
|
|
|
|
z_cap = c_caps[z_idx] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a_cur = int(0) |
|
|
|
|
|
|
|
b_cur = int(0) |
|
|
|
|
|
|
|
c_cur = int(0) |
|
|
|
|
|
|
|
d_cur = int(0) |
|
|
|
|
|
|
|
z_cur = lut & 1 |
|
|
|
|
|
|
|
if z_cur == 1: |
|
|
|
|
|
|
|
cbuf[z_mem, st_idx] = TMIN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z_val = z_cur |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val] |
|
|
|
|
|
|
|
b = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val] |
|
|
|
|
|
|
|
c = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val] |
|
|
|
|
|
|
|
d = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
previous_t = TMIN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current_t = min(a, b, c, d) |
|
|
|
|
|
|
|
inputs = int(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while current_t < TMAX: |
|
|
|
|
|
|
|
if a == current_t: |
|
|
|
|
|
|
|
a_cur += 1 |
|
|
|
|
|
|
|
inputs ^= 1 |
|
|
|
|
|
|
|
thresh = delays[a_idx, 0, z_val] |
|
|
|
|
|
|
|
a = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val] |
|
|
|
|
|
|
|
next_t = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val ^ 1] |
|
|
|
|
|
|
|
elif b == current_t: |
|
|
|
|
|
|
|
b_cur += 1 |
|
|
|
|
|
|
|
inputs ^= 2 |
|
|
|
|
|
|
|
thresh = delays[b_idx, 0, z_val] |
|
|
|
|
|
|
|
b = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val] |
|
|
|
|
|
|
|
next_t = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val ^ 1] |
|
|
|
|
|
|
|
elif c == current_t: |
|
|
|
|
|
|
|
c_cur += 1 |
|
|
|
|
|
|
|
inputs ^= 4 |
|
|
|
|
|
|
|
thresh = delays[c_idx, 0, z_val] |
|
|
|
|
|
|
|
c = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val] |
|
|
|
|
|
|
|
next_t = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val ^ 1] |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d_cur += 1 |
|
|
|
|
|
|
|
inputs ^= 8 |
|
|
|
|
|
|
|
thresh = delays[d_idx, 0, z_val] |
|
|
|
|
|
|
|
d = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val] |
|
|
|
|
|
|
|
next_t = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val ^ 1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (z_cur & 1) != ((lut >> inputs) & 1): |
|
|
|
|
|
|
|
# we generate an edge in z_mem, if ... |
|
|
|
|
|
|
|
if (z_cur == 0 # it is the first edge in z_mem ... |
|
|
|
|
|
|
|
or next_t < current_t # -OR- the next edge on SAME input is EARLIER (need current edge to filter BOTH in next iteration) ... |
|
|
|
|
|
|
|
or (current_t - previous_t) > thresh # -OR- the generated hazard is wider than pulse threshold. |
|
|
|
|
|
|
|
): |
|
|
|
|
|
|
|
if z_cur < (z_cap - 1): # enough space in z_mem? |
|
|
|
|
|
|
|
cbuf[z_mem + z_cur, st_idx] = current_t |
|
|
|
|
|
|
|
previous_t = current_t |
|
|
|
|
|
|
|
z_cur += 1 |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
overflows += 1 |
|
|
|
|
|
|
|
previous_t = cbuf[z_mem + z_cur - 1, st_idx] |
|
|
|
|
|
|
|
z_cur -= 1 |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
z_cur -= 1 |
|
|
|
|
|
|
|
previous_t = cbuf[z_mem + z_cur - 1, st_idx] if z_cur > 0 else TMIN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# output value of cell changed. update all delayed inputs. |
|
|
|
|
|
|
|
z_val = z_val ^ 1 |
|
|
|
|
|
|
|
a = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val] |
|
|
|
|
|
|
|
b = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val] |
|
|
|
|
|
|
|
c = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val] |
|
|
|
|
|
|
|
d = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current_t = min(a, b, c, d) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# generate or propagate overflow flag |
|
|
|
|
|
|
|
cbuf[z_mem + z_cur, st_idx] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cuda.jit() |
|
|
|
@cuda.jit() |
|
|
|