A python module for parsing, processing, and simulating gate-level circuits.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

171 lines
7.4 KiB

import numpy as np
from kyupy.wave_sim import WaveSim, WaveSimCuda, wave_eval_cpu, TMIN, TMAX
from kyupy.logic_sim import LogicSim
from kyupy import logic, bench, sim
from kyupy.logic import mvarray
def test_nand_delays():
op = (sim.NAND4, 4, 0, 1, 2, 3)
#op = (0b0111, 4, 0, 1)
c = np.full((5*16, 1), TMAX) # 5 waveforms of capacity 16
c_locs = np.zeros((5,), dtype='int')
c_caps = np.zeros((5,), dtype='int')
for i in range(5): c_locs[i], c_caps[i] = i*16, 16 # 1:1 mapping
# SDF specifies IOPATH delays with respect to output polarity
# SDF pulse rejection value is determined by IOPATH causing last transition and polarity of last transition
delays = np.zeros((1, 5, 2, 2))
delays[0, 0, 0, 0] = 0.1 # A -> Z rise delay
delays[0, 0, 0, 1] = 0.2 # A -> Z fall delay
delays[0, 0, 1, 0] = 0.1 # A -> Z negative pulse limit (terminate in rising Z)
delays[0, 0, 1, 1] = 0.2 # A -> Z positive pulse limit
delays[0, 1, :, 0] = 0.3 # as above for B -> Z
delays[0, 1, :, 1] = 0.4
delays[0, 2, :, 0] = 0.5 # as above for C -> Z
delays[0, 2, :, 1] = 0.6
delays[0, 3, :, 0] = 0.7 # as above for D -> Z
delays[0, 3, :, 1] = 0.8
simctl_int = np.asarray([0], dtype=np.int32)
def wave_assert(inputs, output):
for i, a in zip(inputs, c.reshape(-1,16)): a[:len(i)] = i
wave_eval_cpu(op, c, c_locs, c_caps, 0, delays, simctl_int)
for i, v in enumerate(output): np.testing.assert_allclose(c.reshape(-1,16)[4,i], v)
wave_assert([[TMAX,TMAX],[TMAX,TMAX],[TMIN,TMAX],[TMIN,TMAX]], [TMIN,TMAX]) # NAND(0,0,1,1) => 1
wave_assert([[TMIN,TMAX],[TMAX,TMAX],[TMIN,TMAX],[TMIN,TMAX]], [TMIN,TMAX]) # NAND(1,0,1,1) => 1
wave_assert([[TMIN,TMAX],[TMIN,TMAX],[TMIN,TMAX],[TMIN,TMAX]], [TMAX]) # NAND(1,1,1,1) => 0
# Keep inputs C=1 and D=1.
wave_assert([[1,TMAX],[2,TMAX]], [TMIN,2.4,TMAX]) # _/⎺⎺⎺ NAND __/⎺⎺ => ⎺⎺⎺\___ (B->Z fall delay)
wave_assert([[TMIN,TMAX],[TMIN,2,TMAX]], [2.3,TMAX]) # ⎺⎺⎺⎺⎺ NAND ⎺⎺\__ => ___/⎺⎺⎺ (B->Z rise delay)
wave_assert([[TMIN,TMAX],[TMIN,2,2.35,TMAX]], [2.3,2.75,TMAX]) # ⎺⎺⎺⎺⎺ NAND ⎺\_/⎺ => __/⎺⎺\_ (pos pulse, .35@B -> .45@Z)
wave_assert([[TMIN,TMAX],[TMIN,2,2.25,TMAX]], [TMAX]) # ⎺⎺⎺⎺⎺ NAND ⎺\_/⎺ => _______ (pos pulse, .25@B -> .35@Z, filtered)
wave_assert([[TMIN,TMAX],[2,2.45,TMAX]], [TMIN,2.4,2.75,TMAX]) # ⎺⎺⎺⎺⎺ NAND _/⎺\_ => ⎺⎺\_/⎺⎺ (neg pulse, .45@B -> .35@Z)
wave_assert([[TMIN,TMAX],[2,2.35,TMAX]], [TMIN,TMAX]) # ⎺⎺⎺⎺⎺ NAND _/⎺\_ => ⎺⎺⎺⎺⎺⎺⎺ (neg pulse, .35@B -> .25@Z, filtered)
def test_tiny_circuit():
c = bench.parse('input(x, y) output(a, o, n) a=and(x,y) o=or(x,y) n=not(x)')
delays = np.full((1, len(c.lines), 2, 2), 1.0) # unit delay for all lines
wsim = WaveSim(c, delays)
assert wsim.s.shape[1] == 5
# values for x
wsim.s[:3,0,0] = 0, 10, 0
wsim.s[:3,0,1] = 0, 20, 1
wsim.s[:3,0,2] = 1, 30, 0
wsim.s[:3,0,3] = 1, 40, 1
# values for y
wsim.s[:3,1,0] = 1, 50, 0
wsim.s[:3,1,1] = 1, 60, 0
wsim.s[:3,1,2] = 1, 70, 0
wsim.s[:3,1,3] = 0, 80, 1
wsim.s_to_c()
x_c_loc = wsim.c_locs[wsim.ppi_offset+0] # check x waveforms
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 0], [TMAX, TMAX, TMAX])
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 1], [20, TMAX, TMAX])
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 2], [TMIN, 30, TMAX])
np.testing.assert_allclose(wsim.c[x_c_loc:x_c_loc+3, 3], [TMIN, TMAX, TMAX])
y_c_loc = wsim.c_locs[wsim.ppi_offset+1] # check y waveforms
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 0], [TMIN, 50, TMAX])
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 1], [TMIN, 60, TMAX])
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 2], [TMIN, 70, TMAX])
np.testing.assert_allclose(wsim.c[y_c_loc:y_c_loc+3, 3], [80, TMAX, TMAX])
wsim.c_prop()
a_c_loc = wsim.c_locs[wsim.ppo_offset+2] # check a waveforms
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 0], [TMAX, TMAX, TMAX])
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 1], [21, 61, TMAX])
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 2], [TMIN, 31, TMAX])
np.testing.assert_allclose(wsim.c[a_c_loc:a_c_loc+3, 3], [81, TMAX, TMAX])
o_c_loc = wsim.c_locs[wsim.ppo_offset+3] # check o waveforms
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 0], [TMIN, 51, TMAX])
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 1], [TMIN, TMAX, TMAX])
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 2], [TMIN, 71, TMAX])
np.testing.assert_allclose(wsim.c[o_c_loc:o_c_loc+3, 3], [TMIN, TMAX, TMAX])
n_c_loc = wsim.c_locs[wsim.ppo_offset+4] # check n waveforms
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 0], [TMIN, TMAX, TMAX])
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 1], [TMIN, 21, TMAX])
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 2], [31, TMAX, TMAX])
np.testing.assert_allclose(wsim.c[n_c_loc:n_c_loc+3, 3], [TMAX, TMAX, TMAX])
wsim.c_to_s()
# check a captures
np.testing.assert_allclose(wsim.s[3:7, 2, 0], [0, TMAX, TMIN, 0])
np.testing.assert_allclose(wsim.s[3:7, 2, 1], [0, 21, 61, 0])
np.testing.assert_allclose(wsim.s[3:7, 2, 2], [1, 31, 31, 0])
np.testing.assert_allclose(wsim.s[3:7, 2, 3], [0, 81, 81, 1])
# check o captures
np.testing.assert_allclose(wsim.s[3:7, 3, 0], [1, 51, 51, 0])
np.testing.assert_allclose(wsim.s[3:7, 3, 1], [1, TMAX, TMIN, 1])
np.testing.assert_allclose(wsim.s[3:7, 3, 2], [1, 71, 71, 0])
np.testing.assert_allclose(wsim.s[3:7, 3, 3], [1, TMAX, TMIN, 1])
# check o captures
np.testing.assert_allclose(wsim.s[3:7, 4, 0], [1, TMAX, TMIN, 1])
np.testing.assert_allclose(wsim.s[3:7, 4, 1], [1, 21, 21, 0])
np.testing.assert_allclose(wsim.s[3:7, 4, 2], [0, 31, 31, 1])
np.testing.assert_allclose(wsim.s[3:7, 4, 3], [0, TMAX, TMIN, 0])
def compare_to_logic_sim(wsim: WaveSim):
choices = np.asarray([logic.ZERO, logic.ONE, logic.RISE, logic.FALL], dtype=np.uint8)
rng = np.random.default_rng(10)
tests = rng.choice(choices, (wsim.s_len, wsim.sims))
wsim.s[0] = (tests & 2) >> 1
wsim.s[3] = (tests & 2) >> 1
wsim.s[1] = 0.0
wsim.s[2] = tests & 1
wsim.s[6] = tests & 1
wsim.s_to_c()
wsim.c_prop()
wsim.c_to_s()
resp = np.array(wsim.s[6], dtype=np.uint8) | (np.array(wsim.s[3], dtype=np.uint8)<<1)
resp |= ((resp ^ (resp >> 1)) & 1) << 2 # transitions
resp[wsim.pi_s_locs] = logic.UNASSIGNED
lsim = LogicSim(wsim.circuit, tests.shape[-1])
lsim.s[0] = logic.mv_to_bp(tests)
lsim.s_to_c()
lsim.c_prop()
lsim.c_to_s()
exp = logic.bp_to_mv(lsim.s[1])
resp[resp == logic.PPULSE] = logic.ZERO
resp[resp == logic.NPULSE] = logic.ONE
exp[exp == logic.PPULSE] = logic.ZERO
exp[exp == logic.NPULSE] = logic.ONE
np.testing.assert_allclose(resp, exp)
def test_b14(b14_circuit, b14_delays):
compare_to_logic_sim(WaveSim(b14_circuit, b14_delays, 8))
def test_b14_strip_forks(b14_circuit, b14_delays):
compare_to_logic_sim(WaveSim(b14_circuit, b14_delays, 8, strip_forks=True))
def test_b14_cuda(b14_circuit, b14_delays):
compare_to_logic_sim(WaveSimCuda(b14_circuit, b14_delays, 8, strip_forks=True))
if __name__ == '__main__':
test_nand_delays()