Browse Source

support for per-simulation delay factors

devel
Stefan Holst 1 month ago
parent
commit
ba1de0bea9
  1. 69
      src/kyupy/wave_sim.py

69
src/kyupy/wave_sim.py

@ -99,13 +99,19 @@ class WaveSim(sim.SimOps): @@ -99,13 +99,19 @@ class WaveSim(sim.SimOps):
self.simctl_int[0] = range(sims) # unique seed for each sim by default, zero this to pick same delays for all sims.
self.simctl_int[1] = 2 # random picking by default.
self.simctl_float = np.zeros((1, sims), dtype=np.float32) + 1
"""Float array for per-simulation delay configuration.
* ``simctl_float[0]`` factor to be multiplied with each delay (default=1.0).
"""
self.e = np.zeros((self.c_locs_len, sims, 2), dtype=np.uint8) # aux data for each line and sim
self.error_counts = np.zeros(self.s_len, dtype=np.uint32) # number of capture errors by PPO
self.lsts = np.zeros(self.s_len, dtype=np.float32) # LST by PPO
self.overflows = np.zeros(self.s_len, dtype=np.uint32) # Overflows by PPO
self.nbytes = sum([a.nbytes for a in (self.c, self.s, self.e, self.c_locs, self.c_caps, self.ops, self.simctl_int)])
self.nbytes = sum([a.nbytes for a in (self.c, self.s, self.e, self.c_locs, self.c_caps, self.ops, self.simctl_int, self.simctl_float)])
def __repr__(self):
dev = 'GPU' if hasattr(self.c, 'copy_to_host') else 'CPU'
@ -131,7 +137,7 @@ class WaveSim(sim.SimOps): @@ -131,7 +137,7 @@ class WaveSim(sim.SimOps):
"""
sims = min(sims or self.sims, self.sims)
for op_start, op_stop in zip(self.level_starts, self.level_stops):
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, 0, sims, self.delays, self.simctl_int, seed, delta)
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, 0, sims, self.delays, self.simctl_int, self.simctl_float, seed, delta)
def c_to_s(self, time=TMAX, sd=0.0, seed=1):
"""Simulates a capture operation at all sequential elements and primary outputs.
@ -159,7 +165,7 @@ class WaveSim(sim.SimOps): @@ -159,7 +165,7 @@ class WaveSim(sim.SimOps):
self.s[2, self.ppio_s_locs] = self.s[8, self.ppio_s_locs]
def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, delta):
def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, simctl_float, seed, delta):
overflows = int(0)
lut = op[0]
@ -193,6 +199,8 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de @@ -193,6 +199,8 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de
delays = delays[_rnd % len(delays)]
else:
delays = delays[0]
a_mem = c_locs[a_idx]
b_mem = c_locs[b_idx]
@ -211,10 +219,10 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de @@ -211,10 +219,10 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de
z_val = z_cur
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, 0, z_val]
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, 0, z_val]
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, 0, z_val]
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, 0, z_val]
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, 0, z_val] * simctl_float[0]
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, 0, z_val] * simctl_float[0]
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, 0, z_val] * simctl_float[0]
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, 0, z_val] * simctl_float[0]
previous_t = TMIN
@ -225,27 +233,27 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de @@ -225,27 +233,27 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de
if a == current_t:
a_cur += 1
inputs ^= 1
thresh = delays[a_idx, a_cur & 1 ^ 1, z_val]
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, a_cur & 1, z_val]
next_t = cbuf[a_mem + a_cur, sim] + delays[a_idx, (a_cur & 1) ^ 1, z_val ^ 1]
thresh = delays[a_idx, a_cur & 1 ^ 1, z_val] * simctl_float[0]
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, a_cur & 1, z_val] * simctl_float[0]
next_t = cbuf[a_mem + a_cur, sim] + delays[a_idx, (a_cur & 1) ^ 1, z_val ^ 1] * simctl_float[0]
elif b == current_t:
b_cur += 1
inputs ^= 2
thresh = delays[b_idx, b_cur & 1 ^ 1, z_val]
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, b_cur & 1, z_val]
next_t = cbuf[b_mem + b_cur, sim] + delays[b_idx, (b_cur & 1) ^ 1, z_val ^ 1]
thresh = delays[b_idx, b_cur & 1 ^ 1, z_val] * simctl_float[0]
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, b_cur & 1, z_val] * simctl_float[0]
next_t = cbuf[b_mem + b_cur, sim] + delays[b_idx, (b_cur & 1) ^ 1, z_val ^ 1] * simctl_float[0]
elif c == current_t:
c_cur += 1
inputs ^= 4
thresh = delays[c_idx, c_cur & 1 ^ 1, z_val]
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, c_cur & 1, z_val]
next_t = cbuf[c_mem + c_cur, sim] + delays[c_idx, (c_cur & 1) ^ 1, z_val ^ 1]
thresh = delays[c_idx, c_cur & 1 ^ 1, z_val] * simctl_float[0]
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, c_cur & 1, z_val] * simctl_float[0]
next_t = cbuf[c_mem + c_cur, sim] + delays[c_idx, (c_cur & 1) ^ 1, z_val ^ 1] * simctl_float[0]
else:
d_cur += 1
inputs ^= 8
thresh = delays[d_idx, d_cur & 1 ^ 1, z_val]
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, d_cur & 1, z_val]
next_t = cbuf[d_mem + d_cur, sim] + delays[d_idx, (d_cur & 1) ^ 1, z_val ^ 1]
thresh = delays[d_idx, d_cur & 1 ^ 1, z_val] * simctl_float[0]
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, d_cur & 1, z_val] * simctl_float[0]
next_t = cbuf[d_mem + d_cur, sim] + delays[d_idx, (d_cur & 1) ^ 1, z_val ^ 1] * simctl_float[0]
if (z_cur & 1) != ((lut >> inputs) & 1):
# we generate an edge in z_mem, if ...
@ -269,10 +277,10 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de @@ -269,10 +277,10 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, de
# output value of cell changed. update all delayed inputs.
z_val = z_val ^ 1
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, a_cur & 1, z_val]
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, b_cur & 1, z_val]
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, c_cur & 1, z_val]
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, d_cur & 1, z_val]
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, a_cur & 1, z_val] * simctl_float[0]
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, b_cur & 1, z_val] * simctl_float[0]
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, c_cur & 1, z_val] * simctl_float[0]
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, d_cur & 1, z_val] * simctl_float[0]
current_t = min(a, b, c, d)
@ -300,11 +308,11 @@ wave_eval_cpu = numba.njit(_wave_eval) @@ -300,11 +308,11 @@ wave_eval_cpu = numba.njit(_wave_eval)
@numba.njit
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, seed, delta):
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, simctl_float, seed, delta):
for op_idx in range(op_start, op_stop):
op = ops[op_idx]
for sim in range(sim_start, sim_stop):
nrise, nfall = wave_eval_cpu(op, c, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], seed, delta)
nrise, nfall = wave_eval_cpu(op, c, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], simctl_float[:, sim], seed, delta)
a_loc = op[6]
a_wr = op[7]
a_wf = op[8]
@ -376,6 +384,7 @@ class WaveSimCuda(WaveSim): @@ -376,6 +384,7 @@ class WaveSimCuda(WaveSim):
self.c_caps = cuda.to_device(self.c_caps)
self.delays = cuda.to_device(self.delays)
self.simctl_int = cuda.to_device(self.simctl_int)
self.simctl_float = cuda.to_device(self.simctl_float)
self.abuf = cuda.to_device(self.abuf)
self.e = cuda.to_device(self.e)
self.error_counts = cuda.to_device(self.error_counts)
@ -395,6 +404,7 @@ class WaveSimCuda(WaveSim): @@ -395,6 +404,7 @@ class WaveSimCuda(WaveSim):
state['c_caps'] = np.array(self.c_caps)
state['delays'] = np.array(self.delays)
state['simctl_int'] = np.array(self.simctl_int)
state['simctl_float'] = np.array(self.simctl_float)
state['abuf'] = np.array(self.abuf)
state['e'] = np.array(self.e)
state['error_counts'] = np.array(self.error_counts)
@ -412,6 +422,7 @@ class WaveSimCuda(WaveSim): @@ -412,6 +422,7 @@ class WaveSimCuda(WaveSim):
self.c_caps = cuda.to_device(self.c_caps)
self.delays = cuda.to_device(self.delays)
self.simctl_int = cuda.to_device(self.simctl_int)
self.simctl_float = cuda.to_device(self.simctl_float)
self.abuf = cuda.to_device(self.abuf)
self.e = cuda.to_device(self.e)
self.error_counts = cuda.to_device(self.error_counts)
@ -432,7 +443,7 @@ class WaveSimCuda(WaveSim): @@ -432,7 +443,7 @@ class WaveSimCuda(WaveSim):
if op_to is not None and op_to <= op_start: break
grid_dim = self._grid_dim(sims, op_stop - op_start)
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, int(0),
sims, self.delays, self.simctl_int, seed, delta)
sims, self.delays, self.simctl_int, self.simctl_float, seed, delta)
cuda.synchronize()
def c_prop_level(self, level, sims=None, seed=1, delta=0):
@ -441,7 +452,7 @@ class WaveSimCuda(WaveSim): @@ -441,7 +452,7 @@ class WaveSimCuda(WaveSim):
op_stop = self.level_stops[level]
grid_dim = self._grid_dim(sims, op_stop - op_start)
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, int(0),
sims, self.delays, self.simctl_int, seed, delta)
sims, self.delays, self.simctl_int, self.simctl_float, seed, delta)
def c_to_s(self, time=TMAX, sd=0.0, seed=1):
grid_dim = self._grid_dim(self.sims, self.s_len)
@ -552,7 +563,7 @@ _wave_eval_gpu = cuda.jit(_wave_eval, device=True) @@ -552,7 +563,7 @@ _wave_eval_gpu = cuda.jit(_wave_eval, device=True)
@cuda.jit()
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, seed, delta):
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, simctl_float, seed, delta):
x, y = cuda.grid(2)
sim = sim_start + x
op_idx = op_start + y
@ -564,7 +575,7 @@ def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_ @@ -564,7 +575,7 @@ def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_
a_wr = op[7]
a_wf = op[8]
nrise, nfall = _wave_eval_gpu(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], seed, delta)
nrise, nfall = _wave_eval_gpu(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], simctl_float[:, sim], seed, delta)
# accumulate WSA into abuf
if a_loc >= 0:

Loading…
Cancel
Save