|
|
@ -76,10 +76,10 @@ class WaveSim(sim.SimOps): |
|
|
|
final values in the waveforms are still valid. |
|
|
|
final values in the waveforms are still valid. |
|
|
|
""" |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
self.params = np.zeros((sims, 4), dtype=np.float32) |
|
|
|
self.simctl_int = np.zeros((1, sims), dtype=np.int32) |
|
|
|
self.params[...,0] = 1.0 |
|
|
|
self.simctl_int[0] = range(sims) |
|
|
|
|
|
|
|
|
|
|
|
self.nbytes = sum([a.nbytes for a in (self.c, self.s, self.c_locs, self.c_caps, self.ops, self.params)]) |
|
|
|
self.nbytes = sum([a.nbytes for a in (self.c, self.s, self.c_locs, self.c_caps, self.ops, self.simctl_int)]) |
|
|
|
|
|
|
|
|
|
|
|
def __repr__(self): |
|
|
|
def __repr__(self): |
|
|
|
return f'<{type(self).__name__} {self.circuit.name} sims={self.sims} ops={len(self.ops)} ' + \ |
|
|
|
return f'<{type(self).__name__} {self.circuit.name} sims={self.sims} ops={len(self.ops)} ' + \ |
|
|
@ -105,7 +105,7 @@ class WaveSim(sim.SimOps): |
|
|
|
""" |
|
|
|
""" |
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, 0, sims, self.delays, self.params, seed) |
|
|
|
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, 0, sims, self.delays, self.simctl_int, seed) |
|
|
|
|
|
|
|
|
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
"""Simulates a capture operation at all sequential elements and primary outputs. |
|
|
|
"""Simulates a capture operation at all sequential elements and primary outputs. |
|
|
@ -133,11 +133,11 @@ class WaveSim(sim.SimOps): |
|
|
|
self.s[2, self.ppio_s_locs] = self.s[8, self.ppio_s_locs] |
|
|
|
self.s[2, self.ppio_s_locs] = self.s[8, self.ppio_s_locs] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _wave_eval(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_idx, delays, param, seed=0): |
|
|
|
def _wave_eval(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, sim, delays, simctl_int, seed=0): |
|
|
|
overflows = int(0) |
|
|
|
overflows = int(0) |
|
|
|
|
|
|
|
|
|
|
|
if len(delays) > 1: |
|
|
|
if len(delays) > 1: |
|
|
|
_rnd = (seed << 4) + (z_idx << 20) + (st_idx << 1) |
|
|
|
_rnd = (seed << 4) + (z_idx << 20) + simctl_int[0] |
|
|
|
for _ in range(4): |
|
|
|
for _ in range(4): |
|
|
|
_rnd = int(0xDEECE66D) * _rnd + 0xB |
|
|
|
_rnd = int(0xDEECE66D) * _rnd + 0xB |
|
|
|
delays = delays[_rnd % len(delays)] |
|
|
|
delays = delays[_rnd % len(delays)] |
|
|
@ -157,14 +157,14 @@ def _wave_eval(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_ |
|
|
|
d_cur = int(0) |
|
|
|
d_cur = int(0) |
|
|
|
z_cur = lut & 1 |
|
|
|
z_cur = lut & 1 |
|
|
|
if z_cur == 1: |
|
|
|
if z_cur == 1: |
|
|
|
cbuf[z_mem, st_idx] = TMIN |
|
|
|
cbuf[z_mem, sim] = TMIN |
|
|
|
|
|
|
|
|
|
|
|
z_val = z_cur |
|
|
|
z_val = z_cur |
|
|
|
|
|
|
|
|
|
|
|
a = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val] |
|
|
|
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, 0, z_val] |
|
|
|
b = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val] |
|
|
|
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, 0, z_val] |
|
|
|
c = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val] |
|
|
|
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, 0, z_val] |
|
|
|
d = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val] |
|
|
|
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, 0, z_val] |
|
|
|
|
|
|
|
|
|
|
|
previous_t = TMIN |
|
|
|
previous_t = TMIN |
|
|
|
|
|
|
|
|
|
|
@ -176,26 +176,26 @@ def _wave_eval(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_ |
|
|
|
a_cur += 1 |
|
|
|
a_cur += 1 |
|
|
|
inputs ^= 1 |
|
|
|
inputs ^= 1 |
|
|
|
thresh = delays[a_idx, 0, z_val] |
|
|
|
thresh = delays[a_idx, 0, z_val] |
|
|
|
a = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val] |
|
|
|
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, 0, z_val] |
|
|
|
next_t = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val ^ 1] |
|
|
|
next_t = cbuf[a_mem + a_cur, sim] + delays[a_idx, 0, z_val ^ 1] |
|
|
|
elif b == current_t: |
|
|
|
elif b == current_t: |
|
|
|
b_cur += 1 |
|
|
|
b_cur += 1 |
|
|
|
inputs ^= 2 |
|
|
|
inputs ^= 2 |
|
|
|
thresh = delays[b_idx, 0, z_val] |
|
|
|
thresh = delays[b_idx, 0, z_val] |
|
|
|
b = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val] |
|
|
|
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, 0, z_val] |
|
|
|
next_t = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val ^ 1] |
|
|
|
next_t = cbuf[b_mem + b_cur, sim] + delays[b_idx, 0, z_val ^ 1] |
|
|
|
elif c == current_t: |
|
|
|
elif c == current_t: |
|
|
|
c_cur += 1 |
|
|
|
c_cur += 1 |
|
|
|
inputs ^= 4 |
|
|
|
inputs ^= 4 |
|
|
|
thresh = delays[c_idx, 0, z_val] |
|
|
|
thresh = delays[c_idx, 0, z_val] |
|
|
|
c = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val] |
|
|
|
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, 0, z_val] |
|
|
|
next_t = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val ^ 1] |
|
|
|
next_t = cbuf[c_mem + c_cur, sim] + delays[c_idx, 0, z_val ^ 1] |
|
|
|
else: |
|
|
|
else: |
|
|
|
d_cur += 1 |
|
|
|
d_cur += 1 |
|
|
|
inputs ^= 8 |
|
|
|
inputs ^= 8 |
|
|
|
thresh = delays[d_idx, 0, z_val] |
|
|
|
thresh = delays[d_idx, 0, z_val] |
|
|
|
d = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val] |
|
|
|
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, 0, z_val] |
|
|
|
next_t = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val ^ 1] |
|
|
|
next_t = cbuf[d_mem + d_cur, sim] + delays[d_idx, 0, z_val ^ 1] |
|
|
|
|
|
|
|
|
|
|
|
if (z_cur & 1) != ((lut >> inputs) & 1): |
|
|
|
if (z_cur & 1) != ((lut >> inputs) & 1): |
|
|
|
# we generate an edge in z_mem, if ... |
|
|
|
# we generate an edge in z_mem, if ... |
|
|
@ -204,45 +204,45 @@ def _wave_eval(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_ |
|
|
|
or (current_t - previous_t) > thresh # -OR- the generated hazard is wider than pulse threshold. |
|
|
|
or (current_t - previous_t) > thresh # -OR- the generated hazard is wider than pulse threshold. |
|
|
|
): |
|
|
|
): |
|
|
|
if z_cur < (z_cap - 1): # enough space in z_mem? |
|
|
|
if z_cur < (z_cap - 1): # enough space in z_mem? |
|
|
|
cbuf[z_mem + z_cur, st_idx] = current_t |
|
|
|
cbuf[z_mem + z_cur, sim] = current_t |
|
|
|
previous_t = current_t |
|
|
|
previous_t = current_t |
|
|
|
z_cur += 1 |
|
|
|
z_cur += 1 |
|
|
|
else: |
|
|
|
else: |
|
|
|
overflows += 1 |
|
|
|
overflows += 1 |
|
|
|
previous_t = cbuf[z_mem + z_cur - 1, st_idx] |
|
|
|
previous_t = cbuf[z_mem + z_cur - 1, sim] |
|
|
|
z_cur -= 1 |
|
|
|
z_cur -= 1 |
|
|
|
else: |
|
|
|
else: |
|
|
|
z_cur -= 1 |
|
|
|
z_cur -= 1 |
|
|
|
previous_t = cbuf[z_mem + z_cur - 1, st_idx] if z_cur > 0 else TMIN |
|
|
|
previous_t = cbuf[z_mem + z_cur - 1, sim] if z_cur > 0 else TMIN |
|
|
|
|
|
|
|
|
|
|
|
# output value of cell changed. update all delayed inputs. |
|
|
|
# output value of cell changed. update all delayed inputs. |
|
|
|
z_val = z_val ^ 1 |
|
|
|
z_val = z_val ^ 1 |
|
|
|
a = cbuf[a_mem + a_cur, st_idx] + delays[a_idx, 0, z_val] |
|
|
|
a = cbuf[a_mem + a_cur, sim] + delays[a_idx, 0, z_val] |
|
|
|
b = cbuf[b_mem + b_cur, st_idx] + delays[b_idx, 0, z_val] |
|
|
|
b = cbuf[b_mem + b_cur, sim] + delays[b_idx, 0, z_val] |
|
|
|
c = cbuf[c_mem + c_cur, st_idx] + delays[c_idx, 0, z_val] |
|
|
|
c = cbuf[c_mem + c_cur, sim] + delays[c_idx, 0, z_val] |
|
|
|
d = cbuf[d_mem + d_cur, st_idx] + delays[d_idx, 0, z_val] |
|
|
|
d = cbuf[d_mem + d_cur, sim] + delays[d_idx, 0, z_val] |
|
|
|
|
|
|
|
|
|
|
|
current_t = min(a, b, c, d) |
|
|
|
current_t = min(a, b, c, d) |
|
|
|
|
|
|
|
|
|
|
|
# generate or propagate overflow flag |
|
|
|
# generate or propagate overflow flag |
|
|
|
cbuf[z_mem + z_cur, st_idx] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
|
|
|
cbuf[z_mem + z_cur, sim] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_wave_eval_cpu = numba.njit(_wave_eval) |
|
|
|
_wave_eval_cpu = numba.njit(_wave_eval) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
@numba.njit |
|
|
|
def wave_eval_cpu(op, cbuf, c_locs, c_caps, st_idx, delays, param, seed=0): |
|
|
|
def wave_eval_cpu(op, cbuf, c_locs, c_caps, sim, delays, simctl_int, seed=0): |
|
|
|
lut, z_idx, a_idx, b_idx, c_idx, d_idx = op |
|
|
|
lut, z_idx, a_idx, b_idx, c_idx, d_idx = op |
|
|
|
_wave_eval_cpu(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_idx, delays, param, seed) |
|
|
|
_wave_eval_cpu(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, sim, delays, simctl_int, seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
@numba.njit |
|
|
|
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, st_start, st_stop, delays, params, seed): |
|
|
|
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, sim_start, sim_stop, delays, simctl_int, seed): |
|
|
|
for op_idx in range(op_start, op_stop): |
|
|
|
for op_idx in range(op_start, op_stop): |
|
|
|
op = ops[op_idx] |
|
|
|
op = ops[op_idx] |
|
|
|
for st_idx in range(st_start, st_stop): |
|
|
|
for sim in range(sim_start, sim_stop): |
|
|
|
wave_eval_cpu(op, c, c_locs, c_caps, st_idx, delays, params[st_idx], seed) |
|
|
|
wave_eval_cpu(op, c, c_locs, c_caps, sim, delays, simctl_int[:, sim], seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
@numba.njit |
|
|
@ -307,7 +307,7 @@ class WaveSimCuda(WaveSim): |
|
|
|
self.c_locs = cuda.to_device(self.c_locs) |
|
|
|
self.c_locs = cuda.to_device(self.c_locs) |
|
|
|
self.c_caps = cuda.to_device(self.c_caps) |
|
|
|
self.c_caps = cuda.to_device(self.c_caps) |
|
|
|
self.delays = cuda.to_device(self.delays) |
|
|
|
self.delays = cuda.to_device(self.delays) |
|
|
|
self.params = cuda.to_device(self.params) |
|
|
|
self.simctl_int = cuda.to_device(self.simctl_int) |
|
|
|
|
|
|
|
|
|
|
|
self._block_dim = (32, 16) |
|
|
|
self._block_dim = (32, 16) |
|
|
|
|
|
|
|
|
|
|
@ -319,7 +319,7 @@ class WaveSimCuda(WaveSim): |
|
|
|
state['c_locs'] = np.array(self.c_locs) |
|
|
|
state['c_locs'] = np.array(self.c_locs) |
|
|
|
state['c_caps'] = np.array(self.c_caps) |
|
|
|
state['c_caps'] = np.array(self.c_caps) |
|
|
|
state['delays'] = np.array(self.delays) |
|
|
|
state['delays'] = np.array(self.delays) |
|
|
|
state['params'] = np.array(self.params) |
|
|
|
state['simctl_int'] = np.array(self.simctl_int) |
|
|
|
return state |
|
|
|
return state |
|
|
|
|
|
|
|
|
|
|
|
def __setstate__(self, state): |
|
|
|
def __setstate__(self, state): |
|
|
@ -330,7 +330,7 @@ class WaveSimCuda(WaveSim): |
|
|
|
self.c_locs = cuda.to_device(self.c_locs) |
|
|
|
self.c_locs = cuda.to_device(self.c_locs) |
|
|
|
self.c_caps = cuda.to_device(self.c_caps) |
|
|
|
self.c_caps = cuda.to_device(self.c_caps) |
|
|
|
self.delays = cuda.to_device(self.delays) |
|
|
|
self.delays = cuda.to_device(self.delays) |
|
|
|
self.params = cuda.to_device(self.params) |
|
|
|
self.simctl_int = cuda.to_device(self.simctl_int) |
|
|
|
|
|
|
|
|
|
|
|
def s_to_c(self): |
|
|
|
def s_to_c(self): |
|
|
|
grid_dim = self._grid_dim(self.sims, self.s_len) |
|
|
|
grid_dim = self._grid_dim(self.sims, self.s_len) |
|
|
@ -343,7 +343,7 @@ class WaveSimCuda(WaveSim): |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
grid_dim = self._grid_dim(sims, op_stop - op_start) |
|
|
|
grid_dim = self._grid_dim(sims, op_stop - op_start) |
|
|
|
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, int(0), |
|
|
|
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, int(0), |
|
|
|
sims, self.delays, self.params, seed) |
|
|
|
sims, self.delays, self.simctl_int, seed) |
|
|
|
cuda.synchronize() |
|
|
|
cuda.synchronize() |
|
|
|
|
|
|
|
|
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
@ -384,11 +384,11 @@ _wave_eval_gpu = cuda.jit(_wave_eval, device=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cuda.jit() |
|
|
|
@cuda.jit() |
|
|
|
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, st_start, st_stop, delays, param, seed): |
|
|
|
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, sim_start, sim_stop, delays, simctl_int, seed): |
|
|
|
x, y = cuda.grid(2) |
|
|
|
x, y = cuda.grid(2) |
|
|
|
st_idx = st_start + x |
|
|
|
sim = sim_start + x |
|
|
|
op_idx = op_start + y |
|
|
|
op_idx = op_start + y |
|
|
|
if st_idx >= st_stop: return |
|
|
|
if sim >= sim_stop: return |
|
|
|
if op_idx >= op_stop: return |
|
|
|
if op_idx >= op_stop: return |
|
|
|
|
|
|
|
|
|
|
|
lut = ops[op_idx, 0] |
|
|
|
lut = ops[op_idx, 0] |
|
|
@ -398,9 +398,7 @@ def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, st_start, st_sto |
|
|
|
c_idx = ops[op_idx, 4] |
|
|
|
c_idx = ops[op_idx, 4] |
|
|
|
d_idx = ops[op_idx, 5] |
|
|
|
d_idx = ops[op_idx, 5] |
|
|
|
|
|
|
|
|
|
|
|
param = param[st_idx] |
|
|
|
_wave_eval_gpu(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, sim, delays, simctl_int[:, sim], seed) |
|
|
|
|
|
|
|
|
|
|
|
_wave_eval_gpu(lut, z_idx, a_idx, b_idx, c_idx, d_idx, cbuf, c_locs, c_caps, st_idx, delays, param, seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cuda.jit() |
|
|
|
@cuda.jit() |
|
|
|