Browse Source

new common scheduler for simulators

devel
Stefan Holst 2 years ago
parent
commit
6801606dca
  1. 305
      src/kyupy/schedule.py

305
src/kyupy/schedule.py

@ -0,0 +1,305 @@
import math
from bisect import bisect, insort_left
import numpy as np
class SimPrim:
BUF1 = 0b1010_1010_1010_1010
INV1 = 0b0101_0101_0101_0101
NAND4 = 0b0111_1111_1111_1111
NAND3 = 0b0111_1111_0111_1111
NAND2 = 0b0111_0111_0111_0111
NOR4 = 0b0000_0000_0000_0001
NOR3 = 0b0000_0001_0000_0001
NOR2 = 0b0001_0001_0001_0001
AND4 = 0b1000_0000_0000_0000
AND3 = 0b1000_0000_1000_0000
AND2 = 0b1000_1000_1000_1000
OR4 = 0b1111_1111_1111_1110
OR3 = 0b1111_1110_1111_1110
OR2 = 0b1110_1110_1110_1110
XOR4 = 0b0110_1001_1001_0110
XOR3 = 0b1001_0110_1001_0110
XOR2 = 0b0110_0110_0110_0110
XNOR4 = 0b1001_0110_0110_1001
XNOR3 = 0b0110_1001_0110_1001
XNOR2 = 0b1001_1001_1001_1001
AO22 = 0b1111_1000_1000_1000
AOI22 = 0b0000_0111_0111_0111
AO21 = 0b1110_1010_1110_1010
AOI21 = 0b0001_0101_0001_0101
OA22 = 0b1110_1110_1110_0000
OAI22 = 0b0001_0001_0001_1111
OA21 = 0b1010_1000_1010_1000
OAI21 = 0b0101_0111_0101_0111
MUX21 = 0b1110_0100_1110_0100
kind_prefixes = {
'nand': (NAND4, NAND3, NAND2),
'nor': (NOR4, NOR3, NOR2),
'and': (AND4, AND3, AND2),
'or': (OR4, OR3, OR2),
'xor': (XOR4, XOR3, XOR2),
'xnor': (XNOR4, XNOR3, XNOR2),
'not': (INV1, INV1, INV1),
'inv': (INV1, INV1, INV1),
'ibuf': (INV1, INV1, INV1),
'__const1__': (INV1, INV1, INV1),
'tieh': (INV1, INV1, INV1),
'buf': (BUF1, BUF1, BUF1),
'nbuf': (BUF1, BUF1, BUF1),
'delln': (BUF1, BUF1, BUF1),
'__const0__': (BUF1, BUF1, BUF1),
'tiel': (BUF1, BUF1, BUF1),
'ao22': (AO22, AO22, AO22),
'aoi22': (AOI22, AOI22, AOI22),
'ao21': (AO21, AO21, AO21),
'aoi21': (AOI21, AOI21, AOI21),
'oa22': (OA22, OA22, OA22),
'oai22': (OAI22, OAI22, OAI22),
'oa21': (OA21, OA21, OA21),
'oai21': (OAI21, OAI21, OAI21),
'mux21': (MUX21, MUX21, MUX21),
}
@classmethod
def names(cls):
return dict([(v, k) for k, v in cls.__dict__.items() if isinstance(v, int)])
class Heap:
def __init__(self):
self.chunks = dict() # map start location to chunk size
self.released = list() # chunks that were released
self.current_size = 0
self.max_size = 0
def alloc(self, size):
for idx, loc in enumerate(self.released):
if self.chunks[loc] == size:
del self.released[idx]
return loc
if self.chunks[loc] > size: # split chunk
chunksize = self.chunks[loc]
self.chunks[loc] = size
self.chunks[loc + size] = chunksize - size
self.released[idx] = loc + size # move released pointer: loc -> loc+size
return loc
# no previously released chunk; make new one
loc = self.current_size
self.chunks[loc] = size
self.current_size += size
self.max_size = max(self.max_size, self.current_size)
return loc
def free(self, loc):
size = self.chunks[loc]
if loc + size == self.current_size: # end of managed area, remove chunk
del self.chunks[loc]
self.current_size -= size
# check and remove prev chunk if free
if len(self.released) > 0:
prev = self.released[-1]
if prev + self.chunks[prev] == self.current_size:
chunksize = self.chunks[prev]
del self.chunks[prev]
del self.released[-1]
self.current_size -= chunksize
return
released_idx = bisect(self.released, loc)
if released_idx < len(self.released) and loc + size == self.released[released_idx]: # next chunk is free, merge
chunksize = size + self.chunks[loc + size]
del self.chunks[loc + size]
self.chunks[loc] = chunksize
size = self.chunks[loc]
self.released[released_idx] = loc
else:
insort_left(self.released, loc) # put in a new release
if released_idx > 0: # check if previous chunk is free
prev = self.released[released_idx - 1]
if prev + self.chunks[prev] == loc: # previous chunk is adjacent to freed one, merge
chunksize = size + self.chunks[prev]
del self.chunks[loc]
self.chunks[prev] = chunksize
del self.released[released_idx]
def __repr__(self):
r = []
for loc in sorted(self.chunks.keys()):
size = self.chunks[loc]
released_idx = bisect(self.released, loc)
is_released = released_idx > 0 and len(self.released) > 0 and self.released[released_idx - 1] == loc
r.append(f'{loc:5d}: {"free" if is_released else "used"} {size}')
return "\n".join(r)
class Schedule:
"""A static scheduler that translates a Circuit into a topologically sorted list of basic logic operations (self.ops) and
a value allocation table (self.vat) for use in simulators.
:param circuit: The circuit to create a schedule for.
:param strip_forks: If enabled, the scheduler will not include fork nodes to safe simulation time.
Stripping forks will cause interconnect delay annotations of lines read by fork nodes to be ignored.
:param keep_signals: If disabled, memory of intermediate signal waveforms will be re-used. This greatly reduces
memory footprint, but intermediate signal waveforms become unaccessible after a propagation.
"""
def __init__(self, circuit, strip_forks=False, keep_signals=True, signal_caps=1):
self.circuit = circuit
self.interface = list(circuit.interface) + [n for n in circuit.nodes if 'dff' in n.kind.lower()]
if isinstance(signal_caps, int):
signal_caps = [signal_caps] * len(circuit.lines)
# indices for state allocation table (sat)
self.zero_idx = len(circuit.lines)
self.tmp_idx = self.zero_idx + 1
self.ppi_offset = self.tmp_idx + 1
self.ppo_offset = self.ppi_offset + len(self.interface)
self.vat_length = self.ppo_offset + len(self.interface)
# translate circuit structure into self.ops
ops = []
interface_dict = dict((n, i) for i, n in enumerate(self.interface))
for n in circuit.topological_order():
if n in interface_dict:
inp_idx = self.ppi_offset + interface_dict[n]
if len(n.outs) > 0 and n.outs[0] is not None: # first output of a PI/PPI
ops.append((SimPrim.BUF1, n.outs[0].index, inp_idx, self.zero_idx, self.zero_idx, self.zero_idx))
if 'dff' in n.kind.lower(): # second output of DFF is inverted
if len(n.outs) > 1 and n.outs[1] is not None:
ops.append((SimPrim.INV1, n.outs[1].index, inp_idx, self.zero_idx, self.zero_idx, self.zero_idx))
else: # if not DFF, no output is inverted.
for o_line in n.outs[1:]:
if o_line is not None:
ops.append((SimPrim.BUF1, o_line.index, inp_idx, self.zero_idx, self.zero_idx, self.zero_idx))
continue
# regular node, not PI/PPI or PO/PPO
o0_idx = n.outs[0].index if len(n.outs) > 0 and n.outs[0] is not None else self.tmp_idx
i0_idx = n.ins[0].index if len(n.ins) > 0 and n.ins[0] is not None else self.zero_idx
i1_idx = n.ins[1].index if len(n.ins) > 1 and n.ins[1] is not None else self.zero_idx
i2_idx = n.ins[2].index if len(n.ins) > 2 and n.ins[2] is not None else self.zero_idx
i3_idx = n.ins[3].index if len(n.ins) > 3 and n.ins[3] is not None else self.zero_idx
kind = n.kind.lower()
if kind == '__fork__':
if not strip_forks:
for o_line in n.outs:
if o_line is not None:
ops.append((SimPrim.BUF1, o_line.index, i0_idx, i1_idx, i2_idx, i3_idx))
continue
sp = None
for prefix, prims in SimPrim.kind_prefixes.items():
if kind.startswith(prefix):
sp = prims[0]
if i3_idx == self.zero_idx:
sp = prims[1]
if i2_idx == self.zero_idx:
sp = prims[2]
break
if sp is None:
print('unknown gate type', kind)
else:
ops.append((sp, o0_idx, i0_idx, i1_idx, i2_idx, i3_idx))
self.ops = np.asarray(ops, dtype='int32')
# create a map from fanout lines to stem lines for fork stripping
stems = np.zeros(self.vat_length, dtype='int32') - 1 # default to -1: 'no fanout line'
if strip_forks:
for f in circuit.forks.values():
prev_line = f.ins[0]
while prev_line.driver.kind == '__fork__':
prev_line = prev_line.driver.ins[0]
stem_idx = prev_line.index
for ol in f.outs:
stems[ol] = stem_idx
# calculate level (distance from PI/PPI) and reference count for each line
levels = np.zeros(self.vat_length, dtype='int32')
ref_count = np.zeros(self.vat_length, dtype='int32')
level_starts = [0]
current_level = 1
for i, op in enumerate(self.ops):
# if we fork-strip, always take the stems for determining fan-in level
i0_idx = stems[op[2]] if stems[op[2]] >= 0 else op[2]
i1_idx = stems[op[3]] if stems[op[3]] >= 0 else op[3]
i2_idx = stems[op[4]] if stems[op[4]] >= 0 else op[4]
i3_idx = stems[op[5]] if stems[op[5]] >= 0 else op[5]
if levels[i0_idx] >= current_level or levels[i1_idx] >= current_level or levels[i2_idx] >= current_level or levels[i3_idx] >= current_level:
current_level += 1
level_starts.append(i)
levels[op[1]] = current_level # set level of the output line
ref_count[i0_idx] += 1
ref_count[i1_idx] += 1
ref_count[i2_idx] += 1
ref_count[i3_idx] += 1
self.level_starts = np.asarray(level_starts, dtype='int32')
self.level_stops = np.asarray(level_starts[1:] + [len(self.ops)], dtype='int32')
# state allocation table. maps line and interface indices to self.state memory locations
self.vat = np.zeros((self.vat_length, 3), dtype='int')
self.vat[:, 0] = -1
h = Heap()
# allocate and keep memory for special fields
self.vat[self.zero_idx] = h.alloc(1), 1, 0
self.vat[self.tmp_idx] = h.alloc(1), 1, 0
ref_count[self.zero_idx] += 1
ref_count[self.tmp_idx] += 1
# allocate and keep memory for PI/PPI, keep memory for PO/PPO (allocated later)
for i, n in enumerate(self.interface):
if len(n.outs) > 0:
self.vat[self.ppi_offset + i] = h.alloc(1), 1, 0
ref_count[self.ppi_offset + i] += 1
if len(n.ins) > 0:
i0_idx = stems[n.ins[0]] if stems[n.ins[0]] >= 0 else n.ins[0]
ref_count[i0_idx] += 1
# allocate memory for the rest of the circuit
for op_start, op_stop in zip(self.level_starts, self.level_stops):
free_list = []
for op in self.ops[op_start:op_stop]:
# if we fork-strip, always take the stems
i0_idx = stems[op[2]] if stems[op[2]] >= 0 else op[2]
i1_idx = stems[op[3]] if stems[op[3]] >= 0 else op[3]
i2_idx = stems[op[4]] if stems[op[4]] >= 0 else op[4]
i3_idx = stems[op[5]] if stems[op[5]] >= 0 else op[5]
ref_count[i0_idx] -= 1
ref_count[i1_idx] -= 1
ref_count[i2_idx] -= 1
ref_count[i3_idx] -= 1
if ref_count[i0_idx] <= 0: free_list.append(self.vat[i0_idx, 0])
if ref_count[i1_idx] <= 0: free_list.append(self.vat[i1_idx, 0])
if ref_count[i2_idx] <= 0: free_list.append(self.vat[i2_idx, 0])
if ref_count[i3_idx] <= 0: free_list.append(self.vat[i3_idx, 0])
o_idx = op[1]
cap = signal_caps[o_idx]
self.vat[o_idx] = h.alloc(cap), cap, 0
if not keep_signals:
for loc in free_list:
h.free(loc)
# copy memory location and capacity from stems to fanout lines
for lidx, stem in enumerate(stems):
if stem >= 0: # if at a fanout line
self.vat[lidx] = self.vat[stem]
# copy memory location to PO/PPO area
for i, n in enumerate(self.interface):
if len(n.ins) > 0:
self.vat[self.ppo_offset + i] = self.vat[n.ins[0]]
self.state_length = h.max_size
Loading…
Cancel
Save