|
|
|
@ -99,7 +99,7 @@ class WaveSim(sim.SimOps):
@@ -99,7 +99,7 @@ class WaveSim(sim.SimOps):
|
|
|
|
|
self.simctl_int[0] = range(sims) # unique seed for each sim by default, zero this to pick same delays for all sims. |
|
|
|
|
self.simctl_int[1] = 2 # random picking by default. |
|
|
|
|
|
|
|
|
|
self.e = np.zeros((self.c_locs_len, sims), dtype=np.uint8) # aux data for each line and sim |
|
|
|
|
self.e = np.zeros((self.c_locs_len, sims, 2), dtype=np.uint8) # aux data for each line and sim |
|
|
|
|
|
|
|
|
|
self.error_counts = np.zeros(self.s_len, dtype=np.uint32) # number of capture errors by PPO |
|
|
|
|
self.lsts = np.zeros(self.s_len, dtype=np.float32) # LST by PPO |
|
|
|
@ -123,7 +123,7 @@ class WaveSim(sim.SimOps):
@@ -123,7 +123,7 @@ class WaveSim(sim.SimOps):
|
|
|
|
|
self.c[self.pippi_c_locs+1] = np.choose(cond, [TMAX, TMAX, sins[1], TMAX]) |
|
|
|
|
self.c[self.pippi_c_locs+2] = TMAX |
|
|
|
|
|
|
|
|
|
def c_prop(self, sims=None, seed=1): |
|
|
|
|
def c_prop(self, sims=None, seed=1, delta=0): |
|
|
|
|
"""Propagates all waveforms from the (pseudo) primary inputs to the (pseudo) primary outputs. |
|
|
|
|
|
|
|
|
|
:param sims: Number of parallel simulations to execute. If None, all available simulations are performed. |
|
|
|
@ -131,7 +131,7 @@ class WaveSim(sim.SimOps):
@@ -131,7 +131,7 @@ class WaveSim(sim.SimOps):
|
|
|
|
|
""" |
|
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
|
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, 0, sims, self.delays, self.simctl_int, seed) |
|
|
|
|
level_eval_cpu(self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, 0, sims, self.delays, self.simctl_int, seed, delta) |
|
|
|
|
|
|
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
|
"""Simulates a capture operation at all sequential elements and primary outputs. |
|
|
|
@ -159,7 +159,7 @@ class WaveSim(sim.SimOps):
@@ -159,7 +159,7 @@ class WaveSim(sim.SimOps):
|
|
|
|
|
self.s[2, self.ppio_s_locs] = self.s[8, self.ppio_s_locs] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed): |
|
|
|
|
def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed, delta): |
|
|
|
|
overflows = int(0) |
|
|
|
|
|
|
|
|
|
lut = op[0] |
|
|
|
@ -169,6 +169,18 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
@@ -169,6 +169,18 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
|
|
|
|
|
c_idx = op[4] |
|
|
|
|
d_idx = op[5] |
|
|
|
|
|
|
|
|
|
input_epoch = (ebuf[a_idx, sim, 1]| |
|
|
|
|
ebuf[b_idx, sim, 1]| |
|
|
|
|
ebuf[c_idx, sim, 1]| |
|
|
|
|
ebuf[d_idx, sim, 1]) |
|
|
|
|
|
|
|
|
|
output_epoch = ebuf[z_idx, sim, 1] |
|
|
|
|
|
|
|
|
|
if (delta): |
|
|
|
|
if input_epoch == 0 and output_epoch == 0: return 0, 0 |
|
|
|
|
|
|
|
|
|
out_changed = output_epoch |
|
|
|
|
|
|
|
|
|
if len(delays) > 1: |
|
|
|
|
if simctl_int[1] == 0: |
|
|
|
|
delays = delays[seed] |
|
|
|
@ -242,6 +254,8 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
@@ -242,6 +254,8 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
|
|
|
|
|
or (current_t - previous_t) > thresh # -OR- the generated hazard is wider than pulse threshold. |
|
|
|
|
): |
|
|
|
|
if z_cur < (z_cap - 1): # enough space in z_mem? |
|
|
|
|
if delta and (cbuf[z_mem + z_cur, sim] != current_t): |
|
|
|
|
out_changed = 1 |
|
|
|
|
cbuf[z_mem + z_cur, sim] = current_t |
|
|
|
|
previous_t = current_t |
|
|
|
|
z_cur += 1 |
|
|
|
@ -262,6 +276,9 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
@@ -262,6 +276,9 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
|
|
|
|
|
|
|
|
|
|
current_t = min(a, b, c, d) |
|
|
|
|
|
|
|
|
|
if delta and (cbuf[z_mem + z_cur, sim] != TMAX): |
|
|
|
|
out_changed = 1 |
|
|
|
|
|
|
|
|
|
# generate or propagate overflow flag |
|
|
|
|
cbuf[z_mem + z_cur, sim] = TMAX_OVL if overflows > 0 else max(a, b, c, d) |
|
|
|
|
|
|
|
|
@ -272,7 +289,9 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
@@ -272,7 +289,9 @@ def _wave_eval(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int, seed):
|
|
|
|
|
e |= z_val # final value |
|
|
|
|
e |= (nrise + nfall)<<2 # number of transitions |
|
|
|
|
|
|
|
|
|
ebuf[z_idx, sim] = e |
|
|
|
|
ebuf[z_idx, sim, 0] = e |
|
|
|
|
|
|
|
|
|
ebuf[z_idx, sim, 1] = input_epoch & out_changed |
|
|
|
|
|
|
|
|
|
return nrise, nfall |
|
|
|
|
|
|
|
|
@ -281,11 +300,11 @@ wave_eval_cpu = numba.njit(_wave_eval)
@@ -281,11 +300,11 @@ wave_eval_cpu = numba.njit(_wave_eval)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@numba.njit |
|
|
|
|
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, seed): |
|
|
|
|
def level_eval_cpu(ops, op_start, op_stop, c, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, seed, delta): |
|
|
|
|
for op_idx in range(op_start, op_stop): |
|
|
|
|
op = ops[op_idx] |
|
|
|
|
for sim in range(sim_start, sim_stop): |
|
|
|
|
nrise, nfall = wave_eval_cpu(op, c, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], seed) |
|
|
|
|
nrise, nfall = wave_eval_cpu(op, c, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], seed, delta) |
|
|
|
|
a_loc = op[6] |
|
|
|
|
a_wr = op[7] |
|
|
|
|
a_wf = op[8] |
|
|
|
@ -363,7 +382,7 @@ class WaveSimCuda(WaveSim):
@@ -363,7 +382,7 @@ class WaveSimCuda(WaveSim):
|
|
|
|
|
self.lsts = cuda.to_device(self.lsts) |
|
|
|
|
self.overflows = cuda.to_device(self.overflows) |
|
|
|
|
|
|
|
|
|
self.retval_int = cuda.to_device(np.array([0], dtype=np.int32)) |
|
|
|
|
self.aux = cuda.to_device(np.zeros(8*1024, dtype=np.int32)) |
|
|
|
|
|
|
|
|
|
self._block_dim = (32, 16) |
|
|
|
|
|
|
|
|
@ -381,7 +400,7 @@ class WaveSimCuda(WaveSim):
@@ -381,7 +400,7 @@ class WaveSimCuda(WaveSim):
|
|
|
|
|
state['error_counts'] = np.array(self.error_counts) |
|
|
|
|
state['lsts'] = np.array(self.lsts) |
|
|
|
|
state['overflows'] = np.array(self.overflows) |
|
|
|
|
state['retval_int'] = np.array(self.retval_int) |
|
|
|
|
state['aux'] = np.array(self.aux) |
|
|
|
|
return state |
|
|
|
|
|
|
|
|
|
def __setstate__(self, state): |
|
|
|
@ -398,7 +417,7 @@ class WaveSimCuda(WaveSim):
@@ -398,7 +417,7 @@ class WaveSimCuda(WaveSim):
|
|
|
|
|
self.error_counts = cuda.to_device(self.error_counts) |
|
|
|
|
self.lsts = cuda.to_device(self.lsts) |
|
|
|
|
self.overflows = cuda.to_device(self.overflows) |
|
|
|
|
self.retval_int = cuda.to_device(self.retval_int) |
|
|
|
|
self.aux = cuda.to_device(self.aux) |
|
|
|
|
|
|
|
|
|
def s_to_c(self): |
|
|
|
|
grid_dim = self._grid_dim(self.sims, self.s_len) |
|
|
|
@ -406,23 +425,23 @@ class WaveSimCuda(WaveSim):
@@ -406,23 +425,23 @@ class WaveSimCuda(WaveSim):
|
|
|
|
|
|
|
|
|
|
def _grid_dim(self, x, y): return cdiv(x, self._block_dim[0]), cdiv(y, self._block_dim[1]) |
|
|
|
|
|
|
|
|
|
def c_prop(self, sims=None, seed=1, op_from=0, op_to=None): |
|
|
|
|
def c_prop(self, sims=None, seed=1, op_from=0, op_to=None, delta=0): |
|
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
|
for op_start, op_stop in zip(self.level_starts, self.level_stops): |
|
|
|
|
if op_from > op_start: continue |
|
|
|
|
if op_to is not None and op_to <= op_start: break |
|
|
|
|
grid_dim = self._grid_dim(sims, op_stop - op_start) |
|
|
|
|
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, int(0), |
|
|
|
|
sims, self.delays, self.simctl_int, seed) |
|
|
|
|
sims, self.delays, self.simctl_int, seed, delta) |
|
|
|
|
cuda.synchronize() |
|
|
|
|
|
|
|
|
|
def c_prop_level(self, level, sims=None, seed=1): |
|
|
|
|
def c_prop_level(self, level, sims=None, seed=1, delta=0): |
|
|
|
|
sims = min(sims or self.sims, self.sims) |
|
|
|
|
op_start = self.level_starts[level] |
|
|
|
|
op_stop = self.level_stops[level] |
|
|
|
|
grid_dim = self._grid_dim(sims, op_stop - op_start) |
|
|
|
|
wave_eval_gpu[grid_dim, self._block_dim](self.ops, op_start, op_stop, self.c, self.c_locs, self.c_caps, self.e, self.abuf, int(0), |
|
|
|
|
sims, self.delays, self.simctl_int, seed) |
|
|
|
|
sims, self.delays, self.simctl_int, seed, delta) |
|
|
|
|
|
|
|
|
|
def c_to_s(self, time=TMAX, sd=0.0, seed=1): |
|
|
|
|
grid_dim = self._grid_dim(self.sims, self.s_len) |
|
|
|
@ -533,7 +552,7 @@ _wave_eval_gpu = cuda.jit(_wave_eval, device=True)
@@ -533,7 +552,7 @@ _wave_eval_gpu = cuda.jit(_wave_eval, device=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cuda.jit() |
|
|
|
|
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, seed): |
|
|
|
|
def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_start, sim_stop, delays, simctl_int, seed, delta): |
|
|
|
|
x, y = cuda.grid(2) |
|
|
|
|
sim = sim_start + x |
|
|
|
|
op_idx = op_start + y |
|
|
|
@ -545,7 +564,7 @@ def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_
@@ -545,7 +564,7 @@ def wave_eval_gpu(ops, op_start, op_stop, cbuf, c_locs, c_caps, ebuf, abuf, sim_
|
|
|
|
|
a_wr = op[7] |
|
|
|
|
a_wf = op[8] |
|
|
|
|
|
|
|
|
|
nrise, nfall = _wave_eval_gpu(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], seed) |
|
|
|
|
nrise, nfall = _wave_eval_gpu(op, cbuf, c_locs, c_caps, ebuf, sim, delays, simctl_int[:, sim], seed, delta) |
|
|
|
|
|
|
|
|
|
# accumulate WSA into abuf |
|
|
|
|
if a_loc >= 0: |
|
|
|
|